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Abstract

Prospect theory is well understood in contexts without a time dimension. In intertem-

poral contexts, however, it is unclear how prospect theory should be applied. In par-

ticular, it is unclear whether probabilities should be weighted within time periods or

whether probabilities of present values should be weighted. Furthermore, it is unclear

what parametric specifications of probability-weighting and value functions should be

used. We find in a pre-registered experiment on a representative sample that the version

weighting probabilities of present values predicts decisions best. Estimated probability

weighting functions are inverse-S shaped, and value functions are almost linear.
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1 Introduction

Analyzing decisions under risk is an important topic in research in finance, economics, and

business. The most prominent contender of expected utility theory is (cumulative) prospect

theory (Tversky and Kahneman, 1992). Prospect theory entails two fundamental breakaways

from the classical expected utility model. First, instead of defining preferences over total

wealth, preferences are defined over changes with respect to a reference point, and it is

assumed that negative changes (losses) are treated differently than positive changes (gains).

Second, outcomes are not weighted by objective probabilities but rather by transformed

probabilities (specifically, unlikely large gains and unlikely large losses are overweighted).

Considering financial decisions, prospect theory can, for example, explain the equity premium

puzzle (Benartzi and Thaler, 1995; Barberis and Huang, 2006), the stock market participation

puzzle (Dimmock and Kouwenberg, 2010), the disposition effect (Odean, 1998; Weber and

Camerer, 1998; Barberis and Xiong, 2009; Meng and Weng, 2017), and the avoidance of

probabilistic insurance (Wakker et al., 1997) or index insurance (Lampe and Würtenberger,

2020). DellaVigna (2009) and Barberis (2013) provide overviews of many more phenomena

that are inconsistent with expected utility theory but can be explained with prospect theory.

Most applications of prospect theory assume an atemporal setting, that is, a setting where the

gains and losses materialize at one point in time (e.g., Benartzi and Thaler, 1995; Berkelaar

et al., 2004; Gomes, 2005; and Barberis and Huang, 2006). In these settings, prospect theory

has been thoroughly analyzed and is well understood. Many natural settings, however,

involve gains and losses at different points in time. Recent studies integrate elements of

prospect theory in such intertemporal settings (see for example Barberis and Huang, 2009;

Barberis and Xiong, 2009; De Giorgi and Legg, 2012; van Bilsen et al., 2020; Hlouskova
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et al., 2017; Meng and Weng, 2017; Deng and Pirvu, 2019). However, in intertemporal

applications, usually only some aspects of prospect theory are incorporated into a setting

that is otherwise one of discounted expected utility maximization. A majority of these

studies include loss aversion with respect to a reference point in their models as in prospect

theory but neglect probability weighting (e.g., Kyle et al., 2006; Barberis and Huang, 2009;

Barberis and Xiong, 2009; Henderson, 2012; Easley and Yang, 2015; Hlouskova et al., 2017;

Meng and Weng, 2017).

To date, there is no generally accepted version of prospect theory in intertemporal settings.

There are not only minor disagreements about the calibration of the parameters, but there

is not even agreement on how probability weighting should be applied. Considering that

prospect theory is widely viewed as the most accurate available description of how people

make risky decisions, this is surprising. This research project addresses this gap.

We refer to the first possible method that can be used as the time-separation method. With

this method, outcomes are ranked within each period and decision weights are calculated

(with probability weighting functions similar to an atemporal setting). Given these decision

weights, each period’s PT value can be calculated and the overall PT value is then the

time-discounted sum of these values. This first method of applying prospect theory is, for

instance, assumed in the analyses by Andreoni and Sprenger (2012); De Giorgi and Legg

(2012); Guo and He (2017); Krause et al. (2020) and van Bilsen and Laeven (2020).

The second method, which we refer to as the present-value method, first calculates the

decision maker’s present value of each possible stream of outcomes, in utility terms. These

present values are then ranked and their decision weights are calculated (decision weights

are again calculated analogously to atemporal prospect theory). The overall PT value is

then calculated as the atemporal PT value of the present values. This method (or a version
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of it with rank-dependent utility, not distinguishing between gains and losses but including

probability weighting) is used in the studies by Chew and Epstein (1990), Bleichrodt and

Eeckhoudt (2006), Halevy (2008), Drouhin (2015), Epper and Fehr-Duda (2015), Blavatskyy

(2016), and Andreoni et al. (2017).

In general, the two methods yield different results (however, for studies that neglect proba-

bility weighting, both methods lead to the same results).1 The first step towards providing a

unifying standard of how to apply prospect theory in intertemporal settings is to understand

which of these two methods describes human choices better.

A second open issue when moving from atemporal to intertemporal prospect theory is the

specification of the value and probability weighting functions (for a given method of applying

prospect theory). Many studies that integrate elements of prospect theory into intertemporal

models use functional forms and parameter calibrations obtained in atemporal settings.2 It

is a priori not clear that the specifications of the utility and probability weighting functions

obtained in an atemporal setting are well suited to analyze intertemporal choices. The studies

by Abdellaoui, l’Haridon and Paraschiv (2013) and Abdellaoui, Bleichrodt, l’Haridon and

Paraschiv (2013), for instance, suggest that the loss aversion parameter in intertemporal

contexts is smaller than usually found in atemporal contexts.

In this study, we elicit certainty equivalents of intertemporal lotteries in a representative

population. We estimate parameter calibrations for a variety of different value, probability-
1In some situations, the conclusion drawn when using one method may stand in contrast to that drawn

when using the other method. In the concluding Section 6, we briefly discuss applications to the long-term
care and private health care insurance markets, where this is the case. In these applications, the application
method describing choices better in our experiment can explain underinsurance as found in the empirical
literature.

2Many studies use the specifications of Tversky and Kahneman (1992), who provide a natural benchmark,
despite the fact that specifications obtained in larger representative samples are available, (e.g., Booij et al.,
2010). Note, however, that the parameters obtained are generally similar to those provided by Tversky and
Kahneman (1992).
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weighting and time-discount functions and determine which of the two methods describes

risky choices better. We also provide a benchmark of functions and parameter values for

intertemporal applications. For a full specification of intertemporal prospect theory, we esti-

mate value and probability-weighting functions jointly with the method of time discounting.

Very closely related literature is scarce. Epper and Fehr-Duda (2015) nicely illustrate

the co-existence of the two methods of intertemporal prospect theory and show that the

present-value method can explain a decision pattern that cannot be explained with the time-

separation method (documented in Andreoni and Sprenger, 2012). However, their study does

not attempt to establish which method in general predicts choices better (neither to estimate

utility, probability-weighting, or time-discount functions).

The two existing studies with the most direct implications regarding which of the two meth-

ods of prospect theory explains human choices better provide conflicting evidence. Andreoni

et al. (2017) find support for the time-separation method, while Rohde and Yu (2022) find

support for the present-value method. Both studies rely on experimental designs that make

the observations of certain outcomes more or less likely depending on whether experimental

subjects use the time-separation method or the present-value method. Andreoni et al. (2017)

investigate whether adding an independent common future risk affects the choice between

two lotteries. Assuming functional forms as usually found in atemporal settings, the choice

can change if participants use the present-value method to evaluate the lotteries but not if

they use the time-separation method (because the PT value of the newly added time period

is identical for both lotteries). Andreoni et al. (2017) interpret their findings as support for

the time-separation method. The support for this interpretation is not very strong, however,

because choices do change in roughly 50% and the difference in explanatory power between
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the methods is small.3 Rohde and Yu (2022) investigate intertemporal correlation aversion

in a laboratory experiment. Intertemporal correlation aversion can arise if participants use

the present-value method to evaluate the lotteries but not if they use the time-separation

method. Rohde and Yu (2022) find that the majority of participants is averse to intertem-

poral correlation, their results thus lend support to the present-value method.

Our paper differs decisively from Andreoni et al. (2017) and Rohde and Yu (2022). Rather

than presenting participants combinations of simple lotteries, where certain choices by par-

ticipants are in line with one method or the other, we attempt to establish which application

method has higher predictive power when participants evaluate many lotteries (in a setting

that does not favor any of the two methods a priori). We also believe that thoroughly esti-

mated value, probability-weighting, and time-discount functions in an intertemporal setting

are of high value. Scholars and practitioners can only use the different methods in appli-

cations if such a parametrization is available (estimating the parameters anew also seems

necessary to make sure that the comparison between the methods is not driven by potentially

unfitting atemporal calibrations). To be able to obtain parameters that extend beyond a

typical student sample (as used, for instance, in Andreoni et al., 2017, and Rohde and Yu,

2022), we conduct the study on a representative sample.4

To preview our results, the present-value method predicts observed choices significantly
3Furthermore, Andreoni et al. (2017) present the relevant choice lists (that only differ by the same added

outcome of a 90% or 10% chance of 19 or 9 USD in four weeks) one after another to the same participants.
This nudges people to make a consistent choice, which favors the time-separation method in their setup.

4There are additional differences, in particular when compared to Andreoni et al. (2017). Participants’
choices in Andreoni et al. (2017), for instance, only influence the first periods’ payouts; that is, what happens
in the future is independent of participants’ choices. This runs counter to many natural settings in which
current decisions also influence the distribution of future risks (e.g., investments, education, health), and, in
particular, it means that there is no possibility for ‘diversification across time’, which Epper and Fehr-Duda
(2015) consider an important reason why the present-value method may explain peoples’ choices better. In
our experiment, future risks are in general not independent.
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better than the time-separation method for all considered parametric specifications. The

prediction performance is also much better than the prediction performance of expected

discounted utility models. The estimated value functions are almost linear for gains and

losses and have a loss aversion coefficient close to one. The estimated probability-weighting

functions are inverse-S shaped and very similar to typical atemporal calibrations.5

While our main focus lies on the comparison of the time-separation method and the present-

value method, we also compare these methods to a third application method, which is similar

to the present-value method. This method also calculates the present values of outcome

streams first, but it calculates these present values in monetary terms before entering them

in a value/utility function (in contrast to the regular present value method, which calculates

present values directly in utility terms). The third application method based on present

values in monetary terms performs as well as the regular present-value method.

As a minor additional result, there is no noticeable difference between incentivized and

hypothetical choices in our experiment. This is not surprising, given that the valuation of

lotteries does not contain strategic elements or social- or self-image considerations. This is

in line with the literature (e.g., Abdellaoui et al., 2011; Noussair et al., 2014; Brañas Garza

et al., 2020; Hackethal et al., 2020).

This paper is organized as follows. Section 2 introduces the two methods of applying prospect

theory to intertemporal settings. Section 3 contains the experimental design and briefly dis-

cusses the pre-registration and the experimental procedures. Section 4 discusses parametric

specifications, the estimation method, and the measure of prediction performance. Section 5
5In the experiment, we implement salient reference points of zero in the different periods. Our results

are robust to allowing for different reference points (and in later applications, it will of course be possible to
work with different reference points). The model feature that increases prediction performance considerably
over expected utility theory is probability weighting, not utility curvature or loss aversion (with or without
variations in the reference points).
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shows the results. Section 6 provides a brief application example where present-value and

time-separation methods yield contrasting results and concludes.

2 Modeling Options for Intertemporal Prospects

This section introduces intertemporal prospects and the two (main) possibilities of modeling

intertemporal decisions with prospect theory.

2.1 Intertemporal Prospects

An atemporal prospect yields one single payout at one time period. Figure 1 a) displays an

explanatory atemporal prospect. The three potential outcomes (arriving at t = 0, without

time discounting) are labeled z1, z2 and z3. Outcome z1, for instance, arrives with probability

p1.

An intertemporal prospect may yield payouts at different time periods. Figure 1 b) displays

an explanatory intertemporal prospect. The potential outcomes of period t are labeled by

zt,1, zt,2... . A period’s outcomes are not necessarily distinct (that is, z1,2 = z1,3 in Figure 1,

for instance, is possible) and the labels may not reflect the outcomes’ rank-order. In the

first period (t = 0), either outcome z0,1 arrives (with probability p) or outcome z0,2 (with

probability 1−p). Outcomes at t = 1 and t = 2 depend in general on the outcomes of previous

periods. The probability that one specific outcome arrives is, thus, equal to the product of

its path probabilities. The probability that the outcome at t = 1 equals z1,1 is, for instance,

given by p ⋅ q.
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(a) Atemporal prospect (b) Intertemporal prospect

Figure 1: Examples of an atemporal and an intertemporal prospect

2.2 Time-separation Method

To evaluate a prospect with outcomes in T periods, the time-separation method first calcu-

lates each period’s PT value. These values are then time-discounted and added up, with a

given time-discount function δ (generally with δ(0) = 1). We denote the PT value of period

t by Vt, t = 0, ..., T − 1. Applying the time-separation method to the example prospect of

Figure 1 implies that its PT value is the sum of its three time-discounted PT values, as

illustrated in Figure 2.

Figure 2: Illustration of the time-separation method
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To calculate each period’s PT value, prospect theory is applied as in an atemporal setting.

Periods’ outcomes are ranked and their objective probabilities are transformed into subjective

decision weights. Denote by xt,1..., xt,nt the ordered and distinct outcomes of period t and

by pt,1, ..., pt,nt their objective probabilities. Each period’s outcome set may consist of gains

and losses, so that xt,1 > xt,2 > ... > xt,kt > 0 > xt,kt+1 > ... > xt,nt . Note that the objective

probabilities are compound probabilities (for example, if z1,1 > z1,2 and z1,1 > z1,3 in Figures 1

b) and 2, then x1,1 = z1,1 and p1,1 = p ⋅ q). The PT value of period t can then simply be

calculated with the formula

Vt =
kt

∑
i=1

π+t,iv(xt,i) +
nt

∑
l=kt+1

π−t,lv(xt,l),

with v denoting the decision maker’s value function (i.e., the utility function), which is

strictly increasing. We assume that the reference point is at 0 and v(0) = 0. Further, the

decision weights π+t,i and π−t,i are defined by

π+t,1 = w+(pt,1) , π−t,nt
= w−(pt,nt),

π+t,i = w+(pt,1 + ... + pt,i) −w+(pt,1 + ... + pt,i−1), for 1 < i ≤ kt,

π−t,l = w−(pt,l + ... + pt,nt) −w−(pt,l+1 + ...pt,nt), for kt < l < nt.

Here w+ is the probability weighting function for gains and w− that for losses, satisfying

w+(0) = w−(0) = 0, w+(1) = w−(1) = 1, both monotonically increasing.

The overall value of the prospect, which we label V , is then the sum of all time-discounted

PT values, thus V = ∑T−1
t=0 δ(t)Vt.
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2.3 Present-value Method

The present-value method evaluates an intertemporal prospect by calculating the present val-

ues of the possible streams of outcomes in utility terms, and then weighting the probabilities

of these present values. A stream of outcomes, is a sequence of outcomes that arrives with

positive probability. We denote the different possible streams of outcomes by o1, o2, ... . An

outcome stream oj thus consists of T outcomes, one in each time period, oj = (oj,0, ..., oj,T−1),

with oj,t denoting the outcome in period t. Figure 3 illustrates the outcome streams of the

example given in Figure 1 (for o2, for instance, o2,0 = z0,1, o2,1 = z1,2, and o2,2 = z2,2).

Figure 3: Illustration of the present-value method

The present value of outcome stream oj, in utility terms, is given by PV (oj) = ∑T−1
t=0 δ(t)v(oj,t).

The present value of outcome stream o1 in Figure 3 is, for instance, given by v(z0,1) +

δ(1)v(z1,1) + δ(2)v(z2,1), with δ(0) = 1 as usually. We denote the number of distinct present

values by m and rank-order them, so that PV1 > ... > PVk > 0 > PVk+1 > ... > PVm. The

probability of receiving the outcome stream with present value PVj is denoted by qj.

The overall value of the intertemporal prospect, W , is the sum of all present values multiplied
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by their decision weights as in atemporal prospect theory,

W =
k

∑
j=1

π+j PVj +
m

∑
h=k+1

π−hPVh,

with the decision weights for gains and losses defined by

π+1 = w+(q1) , π−m = w−(qm),

π+j = w+(q1 + ... + qj) −w+(q1 + ... + qj−1), for 1 < j ≤ k,

π−h = w−(qh + ... + qm) −w−(qh+1 + ...qm), for k < h <m.

2.4 Differences in Evaluations

In general, with non-linear weighting of probabilities, both application methods yield dif-

ferent evaluations of prospects (for an application example where this leads to contrasting

conclusions, see Section 6). However, for a subset of lotteries, both methods give the same

PT value. In particular, the methods give the same PT value for a lottery if any outcome

stream of the lottery contains only non-negative or non-positive outcomes and if, in addition,

the lottery posses a property that we call rank-order stability. We provide a formal definition

in Appendix A and a proof that lotteries with these properties are indeed evaluated equally.

Intuitively, rank-order stability means that if one outcome is larger than another outcome

within one period, then, for any other period, the outcomes that may arrive in addition to

the larger outcome (i.e., outcomes that are in one of the outcome streams containing this

larger outcome) must be at least as large as the outcomes that may arrive in addition to

the smaller outcome. Rank-order stability therefore implies that the best outcome stream

bundles the best outcomes of each period.
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Figure 4 displays two explanatory prospects. Both prospects contain only non-negative

payouts. The first prospect is rank-order stable and its evaluation is, thus, identical for both

application methods. The second prospect is not rank order stable. An arrival of the good

outcome 60 at t = 0 can be followed by the arrival of 0 at t = 1, whereas the arrival of the

outcome 0 at t = 0 can be followed by the arrival of 60 at t = 1.

(a) Rank-order stable (b) Not rank-order stable

Figure 4: Rank Order Stability (Examples)

Notes: This figure shows two examples of intertemporal prospects, one which is rank-order stable and one
which is not rank-order stable.

For most financial or economic applications the evaluations between the methods will differ.

For instance, if a good outcome in one period can be followed by a bad outcome in another

period, rank-order stability does not hold. In addition, even if rank-order stability holds, the

evaluations can differ if some outcome streams contain both positive and negative outcomes.
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3 Experimental Design and Procedures

3.1 Decision Tasks

Each subject makes 48 decisions. For each decision, a subject is presented a lottery (framed

neutrally as a risky option) with a time horizon of three periods (t = 0, 1, 2). The first period

(t = 0) refers to the time of the experiment, the second period (t = 1) to three months after

the experiment, and the third period (t = 2) to six months after the experiment. 16 of the

lotteries only contain positive outcomes (gain lotteries), 16 only contain negative outcomes

(loss lotteries), and 16 contain positive and negative outcomes (mixed lotteries).

For each lottery, we elicit a subject’s switching point from the lottery to a safe option that

yields three certain and identical payouts, the first received at the time of the experiment,

the second three months later, and the third six months later. We elicit the switching point

by asking subjects to position a slider that indicates for which payout amounts of the lottery

they prefer the lottery over the safe option (and, vice versa, for which payout amounts of

the lottery they prefer the safe option).

Figure 5 shows an example of such a decision task. At the top, subjects see the intertemporal

lottery of this decision task (with non-trivial probabilities illustrated with a wheel of fortune).

Below that, subjects see an illustration of the safe option (without the monetary values filled

in, because these depend on subjects’ choices in the task). Below that, subjects see a short

description of the meaning of the position of the slider and the slider which they can position.

When subjects move the slider they increase the amount that they need to be offered in the

safe option (three times) in order to prefer the safe option over the lottery. The slider is

initially always placed at the leftmost position (as depicted in Figure 5). The bold numbers
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in the row above the slider change when the slider is moved. The difference between these

two bold numbers is always one euro (in the analysis, we take the midpoint between these

two number as the certainty equivalent). The limits of the slider (i.e., the leftmost and

rightmost positions) are the lottery’s minimal and maximal possible sums of payouts across

the three time periods (without time discounting), divided by three as the safe option payout

amount is received three times. When the slider is moved, the parts to the left and the right

of the slider are proportional to the money amounts (e.g., assume that a participant in the

example of Figure 5 prefers the risky option for safe option amounts between zero and five

euros; then the slider position would be at a bit less than one fifth of the distance from left

to right).

We designed the decision screen with the aim not to favor one method over the other. The

arrows are present, which are related to outcome streams, but therefore also gray areas

highlighting the time dimension are present.6

3.2 Lotteries

All lotteries used in the experiment, with a description of why they have been chosen, can

be found in Appendix B. Here, we describe the structure behind the lottery choices more

generally and show a few examples.

The following design features hold for all lotteries and aim at keeping the experiment com-

prehensible for participants: (1) each branching in the trees describing the intertemporal

lotteries leads to at most two distinct outcomes in the following period; (2) in the last
6We received a comment that our illustration of the lottery favors the time-separation method, because

the boxes highlighting the time dimension are very salient. Should this indeed be the case, it would indicate
that our result that the present-value method performs better would become even stronger.
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Figure 5: Example of a decision task

Notes: This figure shows a decision task. On top is the decision task’s intertemporal lottery, followed by an
illustration of the safe option (without payout values). The bottom part shows a description of the slider
and the slider to elicit the certainty equivalent of the intertemporal lottery.

period, the number of distinct outcomes is limited to four (this is achieved by relying on

outcomes that arrive with probability one in one time period); (3) outcomes appear only

with probabilities 1, 9/10, 2/3, 1/2, 1/3, or 1/10.
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The 48 lotteries of the experiment can be categorized in 6 sets, each containing 8 lotteries.

The first 3 sets consist of low-stake lotteries: low-stake gain lotteries (Set 1), low-stake loss

lotteries (Set 2), and low-stake mixed lotteries (Set 3). The other three sets consist of high-

stake gain lotteries (Set 4), high-stake loss lotteries (Set 5), and high stake mixed lotteries

(Set 6). The sets are summarized in Table 1. The different sets appear in random order.

Lotteries within each set similarly appear in random order.

Table 1: Overview lottery sets

Gains Losses Gains & Losses
Low stakes Set 1 Set 2 Set 3
High stakes Set 4 Set 5 Set 6

In general, the loss lotteries (Sets 2 and 5) can be obtained by multiplying all outcomes of

the gain lotteries (Sets 1 and 4) by −1. The high-stake lotteries (Sets 4 to 6) can be obtained

by multiplying the low-stake lotteries (Sets 1 to 3) by 20. The 8 lotteries of each set consist

of 6 calibration and 2 test lotteries, implying a total of 36 calibration and 12 test lotteries.

Below we provide further information on the calibration and test lotteries.

Calibration Lotteries: We use the certainty equivalents reported for the calibration lot-

teries to estimate the parameters of value function, weighting functions, and time-discount

function jointly. The calibration lotteries of the sets ensure that all functions can be esti-

mated on a relatively dense grid, for the value functions including small, intermediate and

large positive and negative values.

The outcome streams of the calibration lotteries contain only non-negative or non-positive

outcomes and the calibration lotteries are rank-order-stable. As explained in Section 2.4, this

implies that for any given combination of value function, probability-weighting functions, and
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time-discount function, the evaluations under the time-separation method and the present-

value method are identical. The parameter estimates obtained on the calibration lotteries

are, thus, the same for both methods.

Figure 6 shows two explanatory calibration lotteries from Set 1 (low-stake gain lotteries). All

outcomes are in euros. The outcome of Lottery 1 at t = 0 is either 10 with a low probability

or 0 with a high probability. An arrival of the good outcome at t = 0 implies the arrival of

good outcomes at t = 1 (20 with certainty as compared to 0 with certainty) and also at t = 2

(50 and 20 equally likely, compared to 0 with certainty). Lottery 1, hence, contains several

unlikely good outcomes. Lottery 3, in contrast, contains several likely good outcomes. The

variation in outcomes contributes to the value function being estimated on several small

positive values. Similarly the variation in good outcomes’ arrival probabilities contributes to

the probability weighting function for gains being estimated on several values on the interval

[0, 1].

(a) Lottery 1 (b) Lottery 3

Figure 6: Calibration lottery examples, Lottery Set 1 (low-stake gain lotteries)

Test Lotteries: The test lotteries are designed such that the evaluations under the two

methods give (sizably) different results. The test lotteries can therefore be used to compare

the out-of-sample explanatory power of the two methods. In each of the six sets, one of the

two test lotteries is chosen such that the time-separation method leads to a higher (multi-
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period) certainty equivalent than linear probability weighting if parameters are similar to

the ones usually found for atemporal prospect theory, while the present-value method leads

to a lower certainty equivalent. The opposite holds for the other test lottery. In order to

assure a fair comparison between the two methods we choose the test lotteries such that the

degree to which one method over- and the other method undervalues the lottery are similar

(assuming typical atemporal calibrations).

Figure 7 shows the two test lotteries from Set 6 (high-stake mixed lotteries). In Lottery 47,

the time-separation method would simultaneously underweight the most negative outcome

at t = 1 (−600 arrives with probability 1/2) and overweight the most positive outcome at

t = 2 (1200 arrives with probability 1/6). The time-separation method would then overvalue

the lottery. For the present-value method, the lottery contains three outcome streams with

positive present values: (1200,−600, 1200), (1200, 0, 600), (600, 1200, 0). The present value of

these streams should be close to each other. The probability that one of these three streams

arrives is 2/3. The present-value method would therefore underweight the probability of such

a positive present value and thus undervalue the lottery.

In Lottery 48, at t = 1 and at t = 2, the outcome 1200 arrives with probability 1/2. The

time-separation method would underweight the positive outcome 1200 in these two periods

and therefore undervalue the lottery. For the present-value method, note that the outcome

stream (1200, 1200, 1200) arrives with probability 1/6. The present-value method therefore

overweights this stream and, hence, overvalues the lottery.

In order to quantify the over- and undervaluation (that was just explained intuitively with

the examples), we calculate the certainty equivalent of each lottery using typical atemporal

specifications of the weighting and value functions (omitting time discounting). Note that,

in line with our experimental design, this certainty equivalent would be received three times.
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(a) Lottery 47 (b) Lottery 48

Figure 7: Test lottery examples, Lottery Set 6 (high-stake mixed lotteries)

Table 2 displays the results for two lotteries as illustration, showing that the degrees of over-

and undervaluation are similar. Column (1) shows the certainty equivalent that is calcu-

lated with linear probability weighting. Column (2) displays the certainty equivalent that

is calculated with the time-separation method, and Column (3) its relative deviation from

the evaluation with linear probability weighting. Column (4) shows the certainty equiva-

lent implied by an evaluation with the present-value method, and Column (5) its relative

deviation from the evaluation with linear probability weighting. As shown in Table B.1 in

Appendix B, these characteristics are shared by all 12 test lotteries enabling an a-priori fair

comparison of the two application methods.

Table 2: Overview test lotteries

No weighting Time-separation Present-value
CE CE Rel. Deviation CE Rel. Deviation
(1) (2) (3) (4) (5)

Lottery 47 220.3 265.4 +20% 171.8 −22%
Lottery 48 195.9 141.1 −28% 248.8 +27%

Notes: To calculate the certainty equivalents we use the parametric specifications suggested by Tversky and
Kahneman (1992) i.e, v(x) = 1(x ≥ 0)x0.88

− 1(x < 0)2.25(−x)0.88, and w+(p) = w−(p) = p0.69

(p0.69+(1−p)0.69)1/0.69

(without time discounting).
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3.3 Hypothetical and Incentivized Lotteries

Treatment comparisons are not the main focus of the paper. We implement two treatments in

which the remuneration of participants varies. For participants in treatment T1, all decisions

are hypothetical and participants receive a fixed payment only (15 euros). For participants

in treatment T2 (who also receive the fixed payment of 15 euros), the gain lotteries are

incentivized. Each participant in the experiment has a 25% chance to be assigned to the

incentivized treatment T2. These two treatments serve as robustness check of whether

choices are consistent in both treatments. In the incentivized treatment, the payouts from

the three different time periods are also transferred to the participants’ bank accounts at

three different points in time (the payouts from the first time period are transferred jointly

with the payment for participation in the experiment, the other payouts are transferred three

and six months later).

For subjects in T2, one gain lottery is randomly selected for payment at the end of the

experiment. There is a 99% chance that a low-stake lottery is selected and a 1% chance

that a high-stake lottery is selected. Then a standard payment mechanism is employed. A

random number is drawn from a uniform distribution, defined over the interval from y−/3

to y+/3, where y+ is the maximal and y− the minimal non-discounted sum of payouts of the

lottery (these are the limits of the sliders in the decision tasks, as described in Section 3.1).

The terms y− and y+ are divided by three, because the certainty equivalent is paid thee

times. If the drawn random number is greater than or equal to the subject’s stated switch

point, the subject receives the random number three times. If the random number is lower,

the subject keeps the lottery and the reward is determined by a realization of the lottery.
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3.4 Pre-Analysis Plan

The study was pre-registered at the Open Science Foundation (https://osf.io/7zyp4) with a

detailed pre-analysis plan (https://osf.io/fv8a2). We follow the pre-analysis closely for our

main analysis. Minor existing deviations from the pre-analysis plan are explicitly mentioned.

3.5 Procedures

The data was collected through CentERpanel on a sample consisting of about 9000 Dutch

households that is representative for the Dutch population.7 Data collection and data analy-

sis were entirely separated. The experiment was conducted in Dutch. Instructions and other

material was translated from English to Dutch by CentERpanel. We made sure in several

iterations that the translations are accurate (one of us speaks Dutch and we checked with an

experimental economist who is a native speaker). Before starting the decision tasks, subjects

had to correctly answer a set of comprehension test questions. The English version of the

instructions and comprehension test questions can be found in Appendix C. All subjects who

completed the experiment received 15 euros for participating. Subjects in the incentivized

treatment received on average 84 euros in addition to this.

In a post-experimental questionnaire, we inquired about the comprehension of the tasks and

the attention paid in the experiment:

• During the decision tasks we asked you to position a slider. Was it clear for you what

the position of the slider meant?
7Two pilots with about 25 subjects each were conducted online with the student subject pool of the

Behavioral Lab of the University of St. Gallen. These pilots served to make the elicitation procedure and
the instructions as comprehensible as possible.
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• During the decision tasks we asked you to evaluate risky options with uncertain payouts

at three different points in time. How complicated were these decision tasks?

• Please honestly report your attention during the questionnaire.

Each of these questions only had three answer possibilities. As outlined in our pre-analysis

plan, we exclude all subjects from the analysis that answer at least one of these questions

with the ‘worst’ answer possibility (indicating that it was unclear what the slider meant, that

the decision tasks were too complicated, or that a subject only paid attention in a few parts

of the experiment or not at all). In addition (and as pre-registered), we exclude all subjects

that completed the tasks with a median decision time of less than 15 seconds. We use such

strict exclusion criteria to make sure that we only use data from subjects who understood

the tasks and took them seriously (so that the temptation to click through as fast as possible

to collect the participation fee in a short period of time does not drive our results).

391 subjects started the decision tasks, 13 of them did not finish the experiment.8 Of

the remaining 378 subjects, we exclude 192 participants based on the answers to the post-

experimental questionnaire and an additional 86 participants that finished the decision tasks

with a median time per task of less than 15 seconds. Following our pre-registered data exclu-

sion rules, we therefore drop about 74% of our sample.9 Out of the exactly 100 subjects that

remain in our main analysis, 27 are in the incentivized treatment and 73 in the hypothetical

treatment. Demographic variables in the 100 subjects of the main analysis are similar to
8Our pre-registration specifies that the target number of participants was 240. If 240 had been reached by

the end of September 2020, the experiment should have stopped, otherwise continued in October. At the end
of September, 205 subjects had completed the experiment. We did not receive the data at this point, only
summary information on payments and on the responses from the post-experimental questionnaire. Based
on this, we asked CentERpanel to continue the data collection in October to obtain in total between 350
and 400 participants. Data collection then stopped at the end of October and we obtained the data from
CentERpanel in December.

9Using the full sample of 378 subjects would not affect our main conclusion of the superiority of the
present-value method over the time-separation method.
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the demographic variables among all participants starting the experiment and also among

the Center Panel subject pool (details can be found in the appendix, in Table D.4). Addi-

tional information on responses in the post-game survey, the distribution of median decision

times, and demographic characteristics of participants and Panel subject pool can be found

in Appendix D.

Exclusion rates for studies that estimate preference parameters on a representative sample

are in general only slightly below ours, despite the fact that most other studies have less

complex tasks without time and risk dimensions simultaneously. See, for instance, Booij

et al. (2010), who also use the CentERPanel, with an exclusion rate of 61%, and Dohmen

et al. (2005) and Guiso and Paiella (2008), using representative samples in Germany and

Italy, who drop 61% and 57% of their observations, respectively (the reasons for exclusion

differ between the studies).

4 Estimation Procedure

We first introduce the parametric specifications that we consider for the value, probability-

weighting, and time-discount functions. Then we discuss the maximum-likelihood procedure

with which we estimate the model parameters on the calibration set and how we measure

prediction performance on the test set. The described approach is exactly as in the pre-

analysis plan.
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4.1 Parametric Specification

We consider two value functions, three weighting functions and two time-discount functions.

These are briefly discussed below and shown in Table 3.

Table 3: Function specifications

Specification Parameters
Value functions

Power utility:
v(x) = 1x≥0xα − 1x<0λ (−x)α

α, λ

Exponential utility:
v(x) = 1x≥0

1−exp(−αx)
α − 1x<0λ

1−exp(βx)
β

α , β, λ

Probability weighting functions (gains and losses)
Tversky and Kahneman (1992):
w(p) = pγ

(pγ+(1−p)γ)1/γ
γ+, γ−

Prelec (1998):
w(p) = exp(−η(−ln(p))γ) η+, η−, γ+, γ−

Goldstein Einhorn (1987):
w(p) = ηpγ

ηpγ+(1−p)γ
η+, η−, γ+, γ−

Time-discount functions
Exponential discounting:
δ(t) = exp(−rt) r

Quasi-Hyperbolic discounting:
δ(t) = 1t=0 + 1t>0k exp(−rt) k, r

Notes: This table shows the formulas for the considered value functions, probability weighting functions (for
gains and losses), and time-discount functions. For each function the table lists the parameters that have to
be estimated.

As common in the literature (e.g., Sugden, 2003; Köbberling and Wakker, 2005; and Abdel-

laoui and Kemel, 2013), we assume that the value function is composed of a loss aversion

coefficient λ and basic utility functions for gains and losses. We focus on the two most
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common specifications, power utility (forcing the power coefficients of gains and losses to be

identical, as is common to obtain an interpretable loss aversion coefficient; e.g., Köbberling

and Wakker, 2005; Post et al., 2008; and Tanaka et al., 2010) and exponential utility.

We focus on three common parametric specifications of the probability weighting functions.

The same type of function is always used for gains and for losses, but we allow the parameters

to differ. The first option we consider is the function used by Tversky and Kahneman

(1992), with only one parameter. The second weighting function considered in this study

is the two-parameter specification proposed by Prelec et al. (1998). The third weighting

function considered in this study is the two-parameter specification proposed by Goldstein

and Einhorn (1987).

The time-discount function captures the discounting of future outcomes. We focus on the

two most common specifications, exponential discounting and quasi-hyperbolic discounting

(which discounts all future outcomes when compared to rewards at time t = 0, in addition

to exponential discounting).

As displayed in Table 4, we analyze each possible combination of these functions (there are 12

such combinations) for the time-separation method as well as for the present-value method.

4.2 Maximum-Likelihood Estimation

Each participant reports a multi-period certainty equivalent for a total of 48 lotteries, con-

sisting of 36 calibration and 12 test lotteries. We use the multi-period certainty equivalents

reported for the calibration lotteries to estimate the model parameters.

Consider model Combination C1 with parameters α, λ, γ+, γ− and r, where the parameters

have the meanings as above. That is, the model corresponds to power utility, a Tversky-
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Table 4: Overview function combinations

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Value Power x x x x x x
Exponential x x x x x x

Weighting
T+K (1992) x x x x
Prelec (1998) x x x x
G+E (1987) x x x x

Discount Exponential x x x x x x
Quasi hyp. x x x x x x

Notes: This table shows the twelve combinations of the two types of value functions, three types of probability
weighting functions, and two types of time-discount functions.

Kahnemann probability weighting function, and exponential discounting (the other model

specifications are handled accordingly). As discussed before, we allow the parameters of the

weighting function to differ for gains and losses. These parameters are labeled as γ+ and γ−.

Denote by V (Lj ∣α, λ, γ+, γ−, r) the PT value of the j-th lottery (Lj), arising with one given

parametric specification. The multi-period certainty equivalent of the lottery, cej, is a cer-

tain payout that arises three times (at t = 0, at t = 1, and at t = 2), so that the three

payments jointly have a PT value equal to the PT value of the lottery. The PT value of

the certainty equivalent is v(cej) + exp(−r)v(cej) + exp(−2r)v(cej), independently of which

application method of prospect theory is used (the payment is certain, there is thus no

probability weighting). Indifference between the certainty equivalent and the lottery im-

plies that the certainty equivalent of a lottery can be calculated as cej(α, λ, γ+, γ−, r) =

v−1 ( 1
1+exp(−r)+exp(−2r)V (Lj ∣α, λ, γ+, γ−, r)) , with v−1 denoting the inverse of the value func-

tion.

Following existing literature (e.g., Hey et al., 2009; Bruhin et al., 2010), we write the observed

certainty equivalent of participant i, CEi,j, as CEi,j = cej + ϵi,j (note that we use capital
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letters for observed data). The term ϵi,j reflects a variety of sources (among others hurrying

or inattentiveness). We assume that ϵi,j is normally distributed with mean 0 and standard

deviation σi,j. In addition, we allow for two sources of heteroskedasticity. First, as the

employed set of lotteries has different payout ranges, we assume that the error variance

is proportional to the payout range of the lottery. The payout range of lottery j, wj, is

calculated as wj = ∣Lj,max−Lj,min∣, where Lj,max denotes the maximal and Lj,min the minimal

non-discounted sum of payouts of lottery j. Second, as participants may be heterogeneous

(e.g., with respect to their attention span), we allow the error variance to differ by participant.

This yields the form σi,j = ϵiwj for the standard deviation of the error term, where ϵi denotes

a participant-specific parameter.

Given our assumptions on the distribution of the error term, the contribution of participant

i to the likelihood function L can be expressed as

f(θ, ϵi∣CEi) =
36
∏
j=1

1
σi,j

ϕ(CEi,j − cej(θ)
σi,j

) ,

where the vector CEi = (CEi,1, ..., CEi,36) contains the certainty equivalents participant i

reports for the 36 calibration lotteries, and the vector θ = (α, λ, γ+, γ−, r) contains the param-

eters of the model. Furthermore, ϕ denotes the density of the standard normal distribution.

Using data from all n participants, the log-likelihood function is given by

ℓ(θ, ϵ∣CE) = log L(θ, ϵ∣CE) =
n

∑
i=1

log f(θ, ϵi∣CEi) =
n

∑
i=1

36
∑
j=1

log [ 1
σi,j

ϕ(CEi,j − cej(θ)
σi,j

)],

where the vector CE = (CE1, ..., CEn) = (CE1,1, ..., CE1,36, ..., CEn,1, ..., CEn,36) contains the

certainty equivalents reported for the calibration lotteries by all n participants, and the

vector ϵ = (ϵ1, ..., ϵn) contains the participant-specific error variance parameters.
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For the estimation of the parameters, we maximize the log-likelihood function using standard

iterative algorithms. With this estimation strategy we simultaneously estimate the model

parameters (α, λ, γ+, γ−, r) and the participant-specific error variance parameters ϵ1,...,ϵn.

4.3 Measurement of Prediction Performance on the Test Set (Main

Outcome Variable)

We use the multi-period certainty equivalents reported for the 12 test lotteries to measure

the (out-of-sample) performance of the two methods. For each of the two methods we use the

model parameters that were estimated on the calibration set (e.g., α̂, λ̂, γ̂+, γ̂−, r̂) to predict

choices of the multi-period certainty equivalents in the test set,

ĉej = v−1 ( 1
1 + exp(−r̂) + exp(−2r̂)V (Lj ∣α̂, λ̂, γ̂+, γ̂−, r̂)) .

As measure of prediction performance, we use the (weighted) mean squared errors. The

(weighted) mean squared error of participant i is calculated as

MSEi =
1
12

12
∑
j=1
( 1

wj

(CEi,j − ĉej))
2

,

where wj = ∣Lj,max−Lj,min∣, as before. The weighting ensures that the error is not dispropor-

tionately driven by lottery choices involving large (absolute) payout amounts. Using data

from all n participants, we define our main outcome variable as

MSE = 1
n

n

∑
i=1

MSEi.
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Out of all 24 combinations of application method and functional specification, we consider

the combination best that leads to the lowest MSE.

The predicted certainty equivalents ĉej and thus MSEi and MSE depend on the choice of

the application method. We denote by MSET S and MSEP V the MSE resulting from the

evaluation under the time-separation method and under the present-value method, respec-

tively (given a combination of value, probability-weighting, and time-discount functions).

We denote the difference between these two values by

△MSE ∶=MSET S −MSEP V .

For each of the 12 functional specifications, △MSE indicates whether one application

method describes decisions better than the other.

4.4 Tests and Standard Errors

To test whether the two application methods differ with respect to their prediction perfor-

mance, we investigate the 12 functional specifications in isolation. For each specification we

test whether the difference between the two (weighted) mean squared errors, i.e. △MSE,

is statistically significant different from 0. The null hypothesis H0 is △MSE = 0 and the

(two-sided) alternative hypothesis Ha is △MSE ≠ 0.

Therefore, we conduct (non-parametric) paired bootstrap tests. We draw from our sample

with replacement to obtain bootstrap samples of the same size as our original sample (resam-

pling is done at the level of participants). For each bootstrap sample we follow the procedure

described in Sections 4.2 and 4.3. We first estimate the parameters on the calibration lotteries

and then calculate the two (weighted) mean squared errors (one for each application method)
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on the test lotteries. We denote by MSEb,T S and MSEb,P V the two MSEs that are estimated

on bootstrap sample b and by △MSEb their difference, △MSEb =MSEb,T S −MSEb,P V . We

reject the null hypothesis if △MSEb ≥ 0 in less than 2.5% of the bootstrap samples or if

△MSEb ≤ 0 in less than 2.5% of the bootstrap samples.

We also use these bootstrapped samples to provide standard errors of the parameter estimates

(estimated on the calibration lotteries of the full sample).

4.5 Final Re-estimation

In a final step, we pool the data on the calibration and test lotteries (thus making use of the

full 48 certainty equivalents per participant) to reestimate the parameters, at least for the

most successful combination of application method and functional specification (to provide a

complete model benchmark of how to best apply intertemporal prospect theory). We again

provide bootstrapped standard errors of parameters (as for the parameters estimated on the

calibration set).

5 Results

We first focus on the main result, which is the comparison of the prediction performance

of the two application methods. Thereafter, we re-estimate the parameters on the pooled

training and test set. Analyses that are pre-registered as additional analyses can be found

thereafter in Sections 5.3 and 5.4. In Section 5.3, we analyze which components of PT are

essential for good prediction performance. In Section 5.4, we analyze an additional possible

application method of PT, a version of the present-value method. In Section 5.5 (not pre-
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registered), we show that our results are robust to allowing reference points to differ from

zero. As specified in the pre-analysis plan, we analyze the data from both treatments jointly,

as they are sufficiently similar according to the pre-defined critera (details can be found in

Section 5.6). The number of observations for the analyses is 100.

5.1 Time-separation vs. Present-value Method

As discussed in Section 4, we first estimate the parameters for each of the 12 combinations

separately on the calibration lotteries. We then use these parameters to compare the pre-

diction performance of the models for the test lotteries. The parameter estimates on the

calibration set (which are identical for both application methods) are not very different from

the estimates on the whole sample (shown below in Section 5.2), therefore we do not discuss

them here (they can be found in Appendix D). Note that the probability-weighting functions

are clearly non-linear in all cases, which is necessary for the application methods to lead to

different predictions on the test set.

The main result of the comparison of the different application methods can be found in

Figure 8. This figure shows the mean squared errors on the test set for both application

methods and all 12 combinations of function specifications. It can be seen that the present-

value method always performs better than the time-separation method. This difference is

sizable and highly statistically significant: Figure 9 shows the difference between the mean

squared errors jointly with bootstrapped 95%-confidence intervals.10

10The pre-registration states that we also provide a test in which we compare the best performing of the
12 combinations for the present-value method with the best performing combination for the time-separation
method. This difference is naturally also significant, because the performance of the function combinations
C1-C12 within one application method is very similar (which can be seen from Figures 8 and 9).
Note that in a few cases the predictions of the time-separation are so extreme that they fall outside of the
slider limits. In these cases we replace the predictions by the slider limits (not adjusting the prediction would
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Figure 8: MSE for both application methods (all function combinations)

Notes: This figure shows mean squared errors of present-value and time-separation method on the test set
for all 12 function combinations (with bootstrapped 95% confidence intervals).

Figure 9: Difference in MSE between the application methods (all function combinations)

Notes: This figure shows the average differences in mean squared errors (MSE of time-separation method
minus MSE of present-value method) with bootstrapped 95% confidence intervals.
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The difference in prediction performance is not driven by a particular subset of the test

lotteries. For each of the twelve combinations, the present-value method has a lower MSE

than the time-separation method for each single test lottery (Table D.6 in the appendix

contains the MSE per lottery for each function combination). To illustrate the magnitude

of the differences in prediction performance, Table 5 shows a lottery-by-lottery comparison

for all test lotteries for combination C1, with the mean absolute prediction errors instead of

mean squared errors for easier interpretation (Table D.5 in the appendix shows a by-lottery

comparison of all twelve combinations).

Table 5: Mean absolute prediction error (by lottery)

Low-stake lotteries High-stake lotteries
L7 L8 L15 L16 L23 L24 L31 L32 L39 L40 L47 L48

Payout range 23 20 23 20 30 50 467 400 467 400 600 1000
Mean error TS 6 8.1 7.3 5.6 7.9 16.7 144.1 148.6 146 124.9 180 319.9
Mean error PV 5.2 5.6 6.1 5.6 7.2 14.6 108.5 118 114.4 115 150.7 276.8

Notes: The mean absolute prediction error of Lottery j is calculated as mean(∣CEi,j − ĉej ∣), with CEi,j

denoting the certainty equivalent subject j reported for lottery j and ĉej denoting the predicted certainty
equivalent resulting from the parameters estimated on the calibration set.

One can also illustrate the difference by classifying participants as time-separation or present-

value types (for illustration; this classification is not mentioned in the pre-analysis plan). If

the MSE of one participant for one method is greater than the MSE for the other with a

difference of at least one standard error (of the MSE difference between the two methods),

a participant is classified as a time-separation or a present-value type (otherwise the person

remains unclassified). Table 6 displays the results. For all twelve combinations, the vast

majority of subjects is classified as present-value type. The share of present-value types

ranges from 81 to 89 percent, with 8 to 18 percent unclassified and 1 to 10 percent time-

lead to an even larger difference in MSE between the two methods).
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separation types. Figure D.1 in the Appendix, displays the distribution of the difference

between the two MSEs showing that these are sizable for a majority of the participants.

Table 6: Participant types

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
Time-separation types 10 5 1 1 1 1 5 5 3 1 2 1
Present-value types 81 84 83 81 89 88 87 87 86 89 88 88
Unclassified 9 11 16 18 10 11 8 8 11 10 10 11

Notes: Participant i is classified as time-separation type if MSEP V
i −SE(△MSE) >MSET S

i or as present-
value type if MSET S

i − SE(△MSE) >MSEP V
i . SE(△MSE) denotes the standard error of the difference

in MSE between the two methods.

5.2 Parameter Estimates

Here, we present and discuss the parameter estimates from the reestimation on the full set

of lotteries. Because the present-value method is the superior evaluation method, we only

present the parameter estimates resulting from an evaluation under this method. The results

for the time-separation method can be found in Appendix D.

Which utility function is used (power or exponential) and which of the two-parameter

probability-weighting functions is used (Prelec et al. (1998) or Goldstein and Einhorn (1987))

has only minor implications for the shapes of the calibrated functions. We therefore only

show the parametrizations of the four combinations that employ a power utility and either

one-parameter weighting functions as suggested by Tversky and Kahneman (1992) (C1 and

C2) or two-parameter weighting functions suggested by Goldstein and Einhorn (1987) (C5

and C6). C1 and C5 use exponential time-discounting, C2 and C6 quasi-hyperbolic dis-

counting. The estimates are shown in Table 7 (with standard errors in parentheses). The

estimates for all twelve model combinations can be found in Appendix D.
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Table 7: Overview parameter estimates on full sample (48 lotteries)

Value Weighting Discounting
Combination α β λ γ+ γ− ν+ ν− r k

C1 1.195 1.069 0.535 0.551 0.117
(0.068) (0.096) (0.045) (0.06) (0.036)

C2 1.172 1.065 0.547 0.565 0.016 0.863
(0.061) (0.121) (0.043) (0.057) (0.025) (0.043)

C5 1.091 1.037 0.426 0.448 0.766 0.786 0.070
(0.035) (0.127) (0.066) (0.073) (0.074) (0.071) (0.028)

C6 1.085 1.101 0.423 0.451 0.786 0.796 0.0012 0.884
(0.03) (0.163) (0.07) (0.073) (0.073) (0.068) (0.016) (0.045)

Notes: This table shows the parameter estimates on the full set of lotteries (calibration plus test set) for the
present-value method, for four selected function combinations. Estimates for all twelve function combinations
and for the time-separation method can be found in Appendix D.

Value function: The value functions consist of a basic utility functions for gains and

losses and a loss aversion parameter (λ). The basic utility functions are in general close to

linear, with utility in the gain domain mostly slightly convex and in the loss domain slightly

concave (for the four combinations C9 to C12 that employ an exponential utility and two-

parameter probability weighting functions, the estimated utility is slightly concave for gains

and convex for losses, see the full Table D.8). In the atemporal literature the utility for gains

is generally found to be concave and the utility for losses is found to be convex or linear.

However, similar shapes have already been observed in the atemporal literature (e.g., Bruhin

et al., 2010).11 A potential explanation for almost linear functions relates to complexity. The

present-value method aggregates the outcomes of each stream into a single present value. A

simple form of aggregation is the (time-discounted) sum of all outcomes (monetary values).

When subjects aggregate outcomes, they may, due to the complexity of the task, evaluate
11Bruhin et al. (2010), for instance, calibrate a combination of Goldstein-Einhorn weighting functions and

power utility, as our C5 and C6, with very similar estimates of weighting and utility functions, including
basic utility that is convex for gains and concave for losses.
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outcomes in payout terms rather than in (non-linear) utility terms. Abdellaoui, Bleichrodt,

l’Haridon and Paraschiv (2013), who estimate intertemporal utility without risk, similarly

find that utility is mildly convex for gains and mildly concave for losses.

The second component of the value function is the loss aversion parameter λ. The loss

aversion parameters are on average slightly above one. This is lower than what is usually

observed in the atemporal literature. According to a recent meta study (Brown et al.,

2021), the median loss aversion parameter among 286 aggregate level studies is about 1.5.

However, the few studies that estimate loss aversion in an intertemporal context (without

risk) also find loss aversion coefficients closer to one (Abdellaoui, l’Haridon and Paraschiv,

2013; Abdellaoui, Bleichrodt, l’Haridon and Paraschiv, 2013).12 Following the complexity

explanation from above, subjects may evaluate outcomes in monetary values for simplicity

rather than in utility terms and thereby not distinguish between losses and gains.13

Probability weighting functions: The calibrations of the probability-weighting functions

turn out to be very similar for gains and for losses for all function combinations, suggesting

that one can use the same functions in the gain and in the loss domain (reducing the number

of model parameters). For all specifications, an inverse S-shape is found, as common in

the atemporal literature. The shapes of the weighting functions are also similar across
12Chapman et al. (2022) find that there is less loss aversion among the general population than among

people with high cognitive ability (such as the typical student subject pools).
13A second potential explanation could be that participants may aggregate losses and gains rather than

evaluating these in isolation. Suppose, for instance, that an outcome stream yields 60 at t = 1 and −40 at
t = 2. If subjects aggregate gains and losses, the evaluation of the stream should (neglecting time discounting)
be close to the evaluation of a payout of 20 at t = 1 and no payout at t = 2. The present-value method (as
also the time-separation method), however, transforms each outcome to a utility term before aggregating.
A version of the present-value method (pre-registered as additional analysis) calculating present values in
monetary terms before entering them in a utility function is treated below in Section 5.4. Estimates of the
value function with that version are similar to those obtained with the regular present-value method (loss
aversion coefficients are only slightly higher), so that this explanation does not seem to be the main driver
of the observed differences to the atemporal literature.
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the different specifications, with the two-parameter weighting functions ascending faster for

low values than the one-parametric Tversky-Kahneman specification. Figure 10 displays the

estimated weighting functions for gains for model combinations C1 and C5 as illustrations. In

general, our estimates of probability weighting functions are very similar to those estimated

in atemporal contexts (e.g., Stott, 2006; Booij et al., 2010; Bruhin et al., 2010).

Figure 10: Estimated probability-weighting functions

Notes: This figure shows the estimated weighting functions for gains for function combinations C1 and C5
(for the present-value method). C1 and C5 both use a power value function and exponential discounting.

Time-discount function: Exponential discounting and quasi-hyperbolic discounting lead

to very similar prediction performances in our setting. The estimates for exponential dis-

counting reach from zero to about 12% per quarter. Estimates for quasi-hyperbolic dis-

counting reach from no discounting at all to discounting all future payments by about 15%

(with very small additional exponential discounting when all future outcomes are already

discounted). These discounting patterns are similar to those found in risk-less intertemporal
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decision tasks, as reported in the recent meta study by Havránek et al. (2021).

5.3 The Importance of the Components of PT in Intertemporal

Settings

As mentioned in the pre-analysis plan, we also investigate the importance of PT’s compo-

nents. To do so, we show how the performance deteriorates when the probability weighting

functions are linear, when there is no loss aversion, or when the utility functions are linear

(with all free parameters estimated anew). We also compare the methods to discounted

expected utility maximization. We only show the results for the present-value method, an

investigation for the time-separation method can be found in Appendix D.

The analyses in Sections 5.3 and 5.4 are described as additional analyses in the pre-analysis

plan (with little detail; the analysis is kept as similar to the main analysis as possible).

The core design feature of our calibration set is that the calibrations are the same for time-

separation and present-value method. In addition, the test lotteries are such that the two

methods over- or underestimate the lotteries to a similar extent with typical atemporal

calibrations. These features ensure that our design does not favor one of the two methods.

Both features, however, do not hold when also considering other methods (including expected

discounted utility). Therefore, the comparison here differs as follows.

We randomly select six of the eight lotteries from each set, implying a total of 36 lotteries, as

the new calibration lotteries. We repeat this random selection process 10 times. For each of

these ten repetitions the 36 calibration lotteries are used to calibrate a models’ parameters.

The other twelve lotteries (two per set) are used as test lotteries to compare the predictive

performance, measured by the (weighted) MSE. The numbers of calibration and test lotteries
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are therefore the same as in the main analysis. We denote by MSESi
the (weighted) MSE of

the random selection Si, i ≤ 10. The main outcome variable is the mean of these ten values,

MSE = 1
10

10
∑
i=1

MSESi

Bootstrapped confidence intervals for the MSE are obtained as in the main analyses.

The results are shown in Figure 11. The prediction performances of models with linear utility

for gains and losses (‘PT: Linear Utility’; this model allows for a loss aversion coefficient

different from one) or no loss aversion (‘PT: No Loss Aversion’) are almost identical to the

performance of the full PT application (‘PT: All Components’). The same holds if utility is

not only required to be linear for gains and losses, but on the whole domain, including the

absence of loss aversion (‘PT: Linear Utility and No Loss Aversion’). This implies that utility

curvature and loss aversion can be omitted if a more parsimonious model is desired. However,

forcing linear-probability weighting (‘PT: Linear Probability Weighting’) predicts decisions

significantly worse.14 These findings are consistent with the parametrizations discussed in

Section 5.2, which exhibit almost linear utility with a loss aversion parameter close to one

and highly non-linear probability weighting functions.

We also compare the prediction performance of PT models to standard expected discounted

utility models with linear probability weighting, no loss aversion, and no hyperbolic dis-

counting (‘EDU‘). Figure 11 shows that EDU predicts decisions significantly worse than

PT, including the sparser versions that still allow for non-linear probability weighting. The

prediction performance of EDU and the PT version with linear probability weighting is,
14Several of the MSE bars in Figure 11 are identical across the function combinations. For instance, when

utility is assumed to be linear there is no more distinction between power utility (C1 to C6) and exponential
utility (C7 to C12). For EDU, there are even only two specifications: one with power utility (C1 to C6) and
one with exponential utility (C7 to C12), as there is neither probability weighting nor hyperbolic discounting.
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Figure 11: MSE, PT components (all function combinations)

Notes: This figure compares the prediction performance of the present-value method to versions of it with
some components absent and to expected utility theory (parameters are estimated anew for each method).
The versions are (from left to right for each of the 12 function combinations) the present-value method with
all components (‘PT: All Components’), with linear utility for gains and losses still including a loss-aversion
parameter (‘PT: Linear Utility’), with a loss-aversion parameter of 1 (‘PT: No Loss Aversion’), with linear-
probability weighting (‘PT: Linear Probability Weighting’), with linear utility for gains and losses and a
loss-aversion parameter of 1 (‘PT: Linear Utility and No Loss Aversion’); on the right expected discounted
utility is shown (‘EDU’).

however, almost identical. The calibration of EDU utility functions is almost linear.

5.4 A Third Way of Applying Prospect Theory in Intertemporal

Situations

In addition to the two main methods, we also analyze the performance of a third appli-

cation method of prospect theory (as described in the pre-analysis plan). This method is

in spirit similar to the present-value method. Whereas the regular present-value method
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calculates the present value of an outcome stream (before probability weighting plays a

role) as PV (oj) = ∑T−1
t=0 δ(t)v(oj,t), the third application method calculates it as PV (oj) =

v (∑T−1
t=0 δ(t)oj,t). That is, instead of calculating the present value in utility terms by dis-

counting the utility obtained each period, it first calculates a present value in monetary

terms and then transforms this into utility (this happens again before probability weighting

plays a role). We call the third application method monetary present-value method.15

We find the method intuitively appealing, because the outcomes of the lotteries are of mon-

etary nature and money can be transferred from one period to another (in contrast, we find

the regular present-value more intuitive if the outcomes are not of monetary nature but, for

example, final consumption that cannot be transferred from one period to another). One

may also argue that aggregating outcomes in monetary terms is less demanding than aggre-

gating outcomes in utility terms, so that the method may correspond more closely to simple

decision making by participants.

Figure 12 shows the predictive power of the monetary present-value method and the regular

present-value method. The comparison is again based on 10 random draws of calibration

and test lotteries, as in Section 5.3 (the degrees of freedom are always identical for a given

function combination). It can be seen that the predictive power of the two present-value

methods is virtually identical.

We re-calibrate the functions for the monetary present-value method on the full set of lot-

teries. As the choice of the utility function (power or exponential) and also the choice of the

two-parameter probability weighting function (Prelec et al., 1998, or Goldstein and Einhorn,
15The “time-first” specification in Rohde and Yu (2022) can be restricted to become the regular or the

monetary present-value method. If there is no time-discounting, the method corresponds to the PT ap-
plications in Barberis (2012), Ebert and Strack (2015), and Heimer et al. (2021), and to the discounted
incremental utility model as in Baucells et al. (2022).
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Figure 12: MSE for the present-value method and the monetary present-value method

Notes: This figure shows mean squared errors of the monetary present-value and the (regular) present-value
method on the test set for all 12 function combinations (with bootstrapped 95% confidence intervals).

1987) has again only minor implications for the parametrizations, we only show combinations

C1, C2, C5, and C6 in Table 8, as before (for estimates of all combinations, see Appendix D).

The calibrations are overall similar to those of the regular present-value method (Table 7).

There are some differences, however. The loss-aversion coefficient is on average slightly

higher for the monetary present-value method. This makes intuitively sense if one considers

loss aversion to be present at the “overall” level rather than in each period: the loss-aversion

coefficient in the monetary present-value method captures aversion to losses when the payouts

over the periods are summed up (after discounting), while the loss-aversion coefficient in the

regular present-value method captures aversion to losses within each period. While the

utility is still mildly convex for gains and mildly concave for losses for the combinations that

employ the one-parameter weighting function the utility is now mildly concave for gains and
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Table 8: Calibration monetary present-value method

Value Weighting Discounting
Combination α β λ γ+ γ− ν+ ν− r k

C1 1.179 1.133 0.579 0.592 0
(0.075) (0.227) (0.04) (0.058) (0)

C2 1.182 1.141 0.576 0.576 0 1
(0.072) (0.224) (0.041) (0.058) (0) (0.001)

C5 0.915 1.033 0.403 0.406 1.036 1.05 0.041
(0.049) (0.223) (0.068) (0.075) (0.097) (0.112) (0.023)

C6 0.915 1.087 0.406 0.421 1.03 1.05 0.001 0.938
(0.049) (0.200) (0.069) (0.074) (0.096) (0.118) (0.009) (0.032)

Notes: This table shows the parameter estimates on the full set of lotteries (calibration plus test set) for the
monetary present-value method, for four selected function combinations. Estimates for all twelve function
combinations can be found in Appendix D.

mildly convex for losses for combinations that employ a two-parameter weighting function.

For all combinations, the curvature parameters of the probability weighting functions (γ+

and γ−) are almost identical to those estimated for the regular present-value method. All

functions, thus, again have an inverse-s shape. However, for the two-parametric probabil-

ity weighting functions, the elevation (measured by ν+ and ν−) is greater, implying more

optimism for gains and more pessimism for losses, when compared to the estimates for the

regular present-value method. Figure 13 shows an example of the different weighting func-

tions (estimated weighting function for gains for combination C5).

Estimates of time discounting are a bit lower for the monetary present-value method than

for the regular one. For exponential discounting, estimated discounting per quarter reaches

from zero to about 7%. For quasi-hyperbolic discounting, all future outcomes are estimated

to be discounted by zero to about 12% (with very little additional exponential discounting).

We repeat the analysis of Section 5.3 for the monetary present value method to find out which
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Figure 13: Probability-weighting function for gains for the regular (PV 1) and the
monetary (PV 2) present-value methods

Notes: This figure shows estimated Goldstein-Einhorn probability weighting functions for gains for the
present-value method (PV1) and the monetary present-value method (PV2) for function combination C5
(this function combination uses a power value function and exponential discounting.

components of PT are most important for the prediction performance. As for the regular

present-value method, probability weighting is by far most important. Relying on linear

utility for gains and losses (with or without loss aversion) makes no noticeable difference for

prediction performance. The results can be found in Figure D.3 in the appendix.

5.5 Allowing for Non-zero Reference Points

We designed the experiment such that reference points of zero are natural. Here, we provide

evidence that our results do not depend on this assumption (we conducted this analysis in

response to feedback that we received after the experiment, it is thus not pre-registered). To
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do so, we conduct the analysis described in Sections 5.1 and 5.2 again, with the reference

points of the three time periods as additional parameters to be estimated. The results are

extremely similar to the results obtained when assuming reference points of zero. Figure 14

shows the comparison of the time-separation and present-value methods, similar to Figure 8

(the two figures are basically indistinguishable).

Figure 14: MSE for both application methods (all function combinations), estimated
reference points

Notes: This figure shows mean squared errors of present-value and time-separation method on the test set
for all 12 function combinations (with bootstrapped 95% confidence intervals).

The results are almost identical, because estimated reference points are always very close to

zero. Considering the reference points estimated on the full set of lotteries (considering those

estimated on the calibration set would give a similar picture), all of the 72 reference points are

in absolute terms smaller than one and a half euros, most of them are even smaller than half

a euro (72 reference points, because there are three time periods, two application methods,

and 12 function combinations). The estimated parameters can be found in Tables D.11
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and D.12 in the appendix. These results confirm the interpretation in Section 5.3: the key

model feature in explaining the valuation of intertemporal prospects is probability weighting,

not utility curvature or loss aversion (with or without varying reference points).

5.6 Treatment Comparison

To test whether decisions differ between the two treatments, we proceed as specified in our

pre-analysis plan. For each of the 16 gain lotteries, we test with exact tests for comparing

means (Schlag, 2008) whether the means of the stated certainty equivalents between the two

treatments differ. To counteract the problem of multiple testing, we correct the p-values

using the Bonferroni-Holm method (as described in the pre-analysis plan). None of these

tests are significant (using t-tests or Wilcoxon-Mann-Whitney tests instead also yields no

significant differences; even without corrections for multiple testing none of the p-values for

any single lottery are below 0.05.). Details on these test results can be found in Appendix D.

Figure 15 contains boxplots of choices for all gain lotteries, showing that choices are very

similar in both treatments.

These results confirm earlier findings in the literature. In the elicitation of risk and time

preferences (situations in which lies by participants would neither increase their monetary

rewards nor their social image or self image), it is predominantly found that there are no

considerable differences between hypothetical and incentivized choices (e.g., Abdellaoui et al.,

2011; Noussair et al., 2014; Brañas Garza et al., 2020; Hackethal et al., 2020).16

16The study of risk attitudes by Noussair et al. (2014), which also finds no considerable differences between
hypothetical and incentivized choices, is conducted with the same subject pool as our study.
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(a) Set 1 (low-stake gain) (b) Set 4 (high-stake gain)

Figure 15: Evaluations (stated certainty equivalents) in T1 and T2

Notes: This figure shows boxplots of reported certainty equivalents for all gain lotteries, split up according
to whether the decisions are hypothetical or with monetary incentives.

6 Concluding Remarks

Our pre-registered experiment on a representative sample of the Dutch population tests the

performance of applications of prospect theory in intertemporal settings. We find that the

present-value method (aggregating first over time) performs much better than the time-

separation method (aggregating first over risk). Thus, separating different outcome streams

seems to be more natural for people than separating different time periods. One could

consider this intuitive from the point of view that different outcome streams are indeed

disjoint probabilistic events, while the different time periods are hard to separate as money

can be transferred from one period to another.

Which method is used in applications cannot only lead to minor differences in quantities, but

the two methods may even lead to opposite conclusions. Assume for example an insurable

unfavorable event (a loss) that may occur in any of several time periods. The event occurs

with relatively small probability in any single time period, but the probability that the
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event arrives at one point in time is large. The time-separation method would then predict

overinsurance, because the small probability of an event in any single time period would be

overweighted. The present-value method would predict underinsurance, because the joint

probability of outcome streams with an event at some point in time is large and would be

underweighted. An example of such a situation is, for instance, long-term care insurance.

Long term care is one of the greatest financial risks that people (especially the elderly) face

in many countries, including the U.S. (e.g., Brown and Finkelstein, 2011). Between a third

and half of the elderly enter a nursing home at one point in their life (while the probability

for this to happen is relatively small in any single year). Given the size of the costs (staying

in a private room in a nursing home for the average duration of about two years in the

U.S. costs about USD 200.000), there is a case for risk pooling. However, only between

10 and 20% of the elderly are covered by private long-term care insurance. There is thus

underinsurance in this market (e.g., Ameriks et al., 2016; Brown and Finkelstein, 2011).

This underinsurance is in line with people making decisions with the present-value method

of intertemporal prospect theory, but it stands in contrast to people making decisions with

the time-separation method. A similar case could be made for private health insurance.

Also in this market (e.g., in the U.S. in the first decade of this century, where a very large

fraction of this market was private), there is evidence for underinsurance (e.g., Schoen et al.,

2008), in line with outcomes of the present-value method but in contrast to outcomes of the

time-separation method.

In addition to comparing the two application methods, we also estimate value, probability-

weighting, and time-discount functions. We find very low levels of loss aversion and almost

linear value functions. We believe that this is due to two reasons. First, loss aversion seems

to be lower in the general population than in the typical student subject pools (as argued
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by Chapman et al., 2022). Second, the intertemporal nature of the prospects seems to

decrease distortions of outcome evaluations away from linearity (in line with the findings

by Abdellaoui, l’Haridon and Paraschiv, 2013, and Abdellaoui, Bleichrodt, l’Haridon and

Paraschiv, 2013, in intertemporal settings without risk). In contrast, probability weighting

functions in our study are as in the typical atemporal settings.

We also compare these two application methods to a third method, which is similar to

the present-value method, but which calculates present values in monetary terms before

assigning them a utility value instead of calculating present values directly in utility terms.

We consider this a natural way to apply prospect theory when the outcomes are monetary

gains and losses (which they usually are; however, prospect theory can also be used with

other outcomes, such as consumption levels).

While we focus on prospect theory, there is also evidence of probability misperception differ-

ent from standard prospect theory, for instance due to the representativeness or availability

heuristic (see Tversky and Kahneman, 1974; for a theory that can explain several misper-

ceptions based on retrieving experiences from memory, see Bordalo et al., 2023). We believe

that our study is also relevant for such misperceptions once a time dimension is present,

because the decision of whether to aggregate first over time or over risk must always be

made (unless probabilities are perceived correctly). We believe the evidence in our paper

suggests that applications of other theories to problems with a time dimension should (at

least until further contrasting evidence appears) also aggregate first over time.
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Online Appendix to ”Intertemporal Prospect
Theory”

Immanuel Lampe Matthias Weber

A Differences in Evaluation and Rank-order Stability

This section provides our formal definition of rank-order stability and a proof of a proposition
that summarizes the relationship between rank-order stability and identical evaluations of
the two application methods.

We start with the formal definition of rank-order stability.

Definition Rank-order-stability: Consider an intertemporal prospect with potential
payouts at T different points in time. Denote by Xt̃∣xt=xt,kt

the set of outcomes that may
arrive in period t̃ ≤ T −1 given that the outcome in period t ≤ T −1 is xt,kt . An intertemporal
prospect is called rank-order stable if for any two outcomes xt,jt and xt,kt of any period
t ≤ T − 1 with xt,jt > xt,kt it holds that min(Xt̃∣xt=xt,jt

) ≥ max(Xt̃∣xt=xt,kt
) for all t̃ ≤ T − 1.

We next state three lemmas that are required to proof the core proposition of this section.

Lemma 1: Denote by oj = (oj,0, ..., oj,T−1) and ok = (ok,0, ..., ok,T−1) two outcome streams.
Rank-order stability implies that if for any period t the outcome of stream j is larger than
the outcome of stream k, oj,t > ok,t, then the present-value of stream j is larger then the
present value of stream k, PV (oj) > PV (ok).

Proof: Under Rank-order stability oj,t > ok,t implies oj,t̃ ≥ ok,t̃ for all t̃ ≠ t and therefore
PV (oj) > PV (ok).

◻

Lemma 2: Denote by o1, o2, ... the outcome streams and by PV1 > ... > PVn > 0 their ordered
distinct present values. in addition, denote by q1, ..., qn the associated probabilities. The
present-value method transforms the objective probabilities q1, ..., qn into subjective decision
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weights π1, ..., πn employing a probability weighting function w+. The following calculation
rules hold for these subjective decision weights:

• A1: π1 + .... + πk = w+(q1 + ... + qk), for all k ≤ n.
• A2: πk + ..... + πj = w+(q1 + ... + qj) −w+(q1 + ... + qk−1), for all k > 1 and j > k.

Proof:

π1 + π2 + π3 + .... + πk = w+(q1) + [w+(q1 + q2) −w(q1)]
+ [w+(q1 + q2 + q3) −w+(q1 + q2)] + ...

+ [w+(q1 + ... + qk) −w+(q1 + ... + qk−1)]
= w+(q1) −w+(q1) +w+(q1 + q2) −w+(q1 + q2) + ... +w+(q1 + ... + qk)
= 0 + ... + 0 +w+(q1 + ... + qk) = w+(q1 + ... + qk)

πk + πk+1 + ..... + πj = [w+(q1 + ... + qk) −w+(q1 + ... + qk−1)]
+ [w+(q1 + ... + qk+1) −w+(q1 + ... + qk)] + ...

+ [w+(q1 + ... + qj) −w+(q1 + ... + qj−1)]
= −w+(q1 + ... + qk−1) +w+(q1 + ... + qk) −w+(q1 + ... + qk) + ... +w+(q1 + ... + qj)
= −w+(q1 + ... + qk−1) + 0 + ... + 0 +w+(q1 + ... + qj)
= w+(q1 + ... + qj) −w+(q1 + ... + qk−1)

◻

Lemma 3: Both application methods imply an evaluation of the form∑T−1
t=0 δ(t)∑kt

i=1 πt,iv(xt,i).

Proof: The evaluation of an intertemporal prospect by the time-separation method is given
by

V =
T−1
∑
t=0

δ(t)Vt =
T−1
∑
t=0

δ(t)
kt

∑
i=1

πT S
t,i v(xt,i).

The outcome xt,i thus, receives the weight πT S
t,i .

The present value method assigns decision weights to outcome streams. Suppose the outcome
stream oj with present value ∑T

t=1 δ(t)v(oj,t) is assigned the decision weight πP V
j . This implies
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that each outcome of the outcome stream is assigned the weight πP V
j (πP V

j ∑T−1
t=0 δ(t)v(oj,t) =

∑T−1
t=0 δ(t)πP V

j v(oj,t)). Multiple outcome streams may yield the outcome xt,i in period t. The
total weight outcome xt,i receives under the present-value method is, thus, the sum of the
weights that the streams containing this outcome receive. Denote the this sum by πP V

t,i .
If, for instance, the only two streams that contain outcome xt,i are stream oj and ok, then
πP V

t,i = πP V
j + πP V

k , with πP V
j and πP V

k denoting the weight assigned to stream oj and ok.
The evaluation of an intertemporal prospect as suggested by the present-value method can
therefore be written as

W =
k

∑
j=1

πjPVj =
T−1
∑
t=0

δ(t)
kt

∑
i=1

πP V
t,i v(xt,i).

◻

Comparing the two evaluations V and W from the proof above, it is obvious that if πT S
t,i

= πP V
t,i holds for all outcomes xt,i, then the two methods yield the same evaluation. The

proposition below summarizes the relationship between rank-order stability and identical
evaluations.

Proposition 1: If each outcome stream of an intertemporal prospect contains only non-
negative or non-positive outcomes and the prospect is rank-order stable, then the evaluations
under the two application methods are identical.

Proof: The proof contains two steps.

Step 1: We start the proof by assuming that the prospect only contains non-negative payouts.
Denote by xt,1 the best outcome of period t and by pt,1 its objective probability. The assigned
weight under the time-separation method is

πT S
t,1 = w+(pt,1).

As displayed in Table A.1, denote by o1...ont,1 the nt,1 outcome streams that contain the
outcome xt,1 and by q1...qnt,1 their objective probabilities. Note that q1 + ... + qnt,1 = pt,1.
Lemma 1 implies that o1, ..., on1 are placed in the first nt,1 positions if streams are ordered by
their present values. Using Lemma 2 A2, the sum of the weights assigned to these streams
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is therefore equal to
w+(q1 + ... + qnt,1) = w+(pt,1).

The outcome xt,1 is therefore multiplied by the same factor under both methods.

Table A.1: Intertemporal prospect (for proof)

Stream Probability Payout in period t

o1 q1 xt,1
o2 q2 xt,1
⋮ ⋮ ⋮

ont,1 qnt,1 xt,1

ont,1+1 qnt,1+1 xt,2
o2 q2 xt,2
⋮ ⋮ ⋮

ont,1+nt,2 qnt,1+nt,2 xt,2

⋮ ⋮ ⋮

Denote by xt,2 the second best outcome of period t and by pt,2 its objective probability. The
assigned weight under the time-separation method is

πT S
t,2 = w+(pt,1 + pt,2) −w+(pt,1).

As displayed in Table A.1 denote by ont,1+1...ont,1+nt,2 the nt,2 outcome streams that contain
the outcome xt,2 and by qnt,1+1 ... qnt,1+nt,2 their objective probabilities. Note that qnt,1+1+...+
qnt,1+nt,2 = pt,2. Lemma 1 implies that ont,1+1...ont,1+nt,2 are placed in the nt,1 + 1 to nt,1 + nt,2

positions if streams are ordered by their present values. Using Lemma 2 A2 the sum of the
decision weights assigned to these streams is therefore given by

w+(q1 + ... + qnt,1+nt,2) −w+(q1 + ... + qnt,1) = w+(pt,1 + pt,2) −w+(pt,1)

The outcome xt,2 is therefore multiplied by the same factor under both methods.

The same reasoning as above can also be applied to the other outcomes of period t and also
to outcomes of other periods. It therefore holds that πP V

t,i = πT S
t,i for all i ≤ kt and t ≤ T − 1.

Because both methods assign the same weights, the evaluations are identical.
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Step 2: The same reasoning as in Step 1 can also be applied to prospects that only contain
negative payouts. For mixed prospects whose outcome streams either contain only non-
negative payouts or non-positive payouts the evaluation can be separated into two parts.
The evaluation of the non-negative part yields V + under the time-separation method and
W + under the present-value method. The evaluation of the non-positive part yields V − and
W −. With the same reasoning as above V + = W + and V − = W − holds and, thus, also
V + + V − =W + +W −.

◻

B Lotteries in the Experiment

This section summarizes the lotteries of Set 1 (low-stake gain lotteries) and Set 3 (low-
stake mixed lotteries). The loss lotteries (Sets 2 and 5) can be obtained by multiplying all
outcomes of the gain lotteries (Sets 1 and 4) by −1. The high-stake lotteries (Sets 4 to 6)
can be obtained by multiplying the low-stake lotteries (Sets 1 to 3) by 20.

Figure B.1 displays the 8 lotteries of Set 1. All outcomes are in euros. Lotteries 1 to 6 are
calibration lotteries, lotteries 7 and 8 test lotteries. The outcome of Lottery 1 at t = 0 is
either 10 with a low probability or 0 with a high probability. An arrival of the good outcome
at t = 0 implies the arrival of good outcomes at t = 1 (20 with certainty as compared to 10
with certainty) and also at t = 2 (50 and 20 equally likely compared to 0 with certainty).
Lottery 1, hence, contains two unlikely good outcome streams. Lottery 2 is identical to
Lottery 1 except that probabilities at t = 0 change. For Lotteries 3 and 4 an arrival of the
good outcome at t = 0 again implies the arrival of good outcomes at t = 1 and also at t = 2.
Note that the good outcome streams are now likely to arrive. Lottery 5 is a variation of
Lottery 1 in which the order of the first two periods and also probabilities at t = 0 change.
Lottery 6 is a variation of Lottery 5 in which the uncertainty is shifted to the lower (bad)
outcome stream. In general, the large number of low-stake outcomes of lotteries 1,2,3,4,5
and 6 ensures that the value function is estimated on a dense grid of small positive values.
The large number of distinct outcomes and the variation in probabilities ensures that the
probability weighting function is estimated on a dense grid spanning the whole domain.
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For the first test lottery, Lottery 7, note that at t = 0 and t = 2 the good outcome (20
at t = 0 and 70 at t = 2) arrives with probability 1/3. With a probability weighting func-
tion as found in atemporal prospect theory, the time-separation method would assess these
probabilities approximately correct (common specifications of the weighting function suggest
that a probability of 1/3 is assessed approximately correctly). At t = 1, the good outcome
50 arrives with probability 1/6. With a typical atemporal weighting function, the time-
separation method would overweight the good outcome 50 and therefore overestimate the
lottery. This is different for the present-value method. The present values of the two best
outcome streams (20, 50, 0) and (0, 0, 70) should be similar. The probability that one of
these two outcome streams arrives is 1/2. With a typical atemporal weighting function, the
present-value method would underweight these two streams and therefore underestimate the
lottery.

For the second test lottery, Lottery 8, note that at t = 1 and also at t = 2 the outcome
60 arrives with a probability close or equal to 1/2. With a typical atemporal weighting
function, the time-separation method would underweight the good outcome 60 and, thus,
underestimate the lottery. For the present-value method note that the best outcome stream
(10, 50, 60) arrives with probability 1/10. With a typical atemporal weighting function, the
present-value method would overweight the best outcome stream and therefore overestimate
the lottery.

The lotteries of Set 3 are displayed in Figure B.2. Lotteries 17 to 22 are calibration lotteries,
lotteries 23 and 24 are test lotteries. For the calibration lotteries note that these are replicates
of the calibration lotteries of Set 1 (Lotteries 1 to 6 as displayed in Figure B.1) except that
outcomes change. The upper half of each lottery exclusively consists of positive outcomes
and the lower half exclusively consists of negative outcomes. The arrival of positive outcomes
is unlikely in Lottery 17 and 18. Lottery 19 and 20 are variations of Lottery 17 and 18 in
which outcomes are multiplied by −1 and the order of period 2 and 3 changes. Lottery 21 is a
variation of Lottery 17 in which the order of the first two periods as well as the probabilities
at t = 0 change. Lottery 22 is a variation of Lottery 21 in which outcomes are multiplied
by −1. These six calibration lotteries again ensure that the value function is estimated on
a dense grid of small values and that the probability weighting function is estimated on a
dense grid spanning the whole domain.
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(a) Lottery 1 (b) Lottery 2

(c) Lottery 3 (d) Lottery 4

(e) Lottery 5 (f) Lottery 6

(g) Lottery 7 (h) Lottery 8

Figure B.1: Lottery Set 1 (low-stake gain lotteries)
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(a) Lottery 17 (b) Lottery 18

(c) Lottery 19 (d) Lottery 20

(e) Lottery 21 (f) Lottery 22

(g) Lottery 23 (h) Lottery 24

Figure B.2: Lottery Set 3 (low-stake mixed lotteries)
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For Lottery 23 at t = 1, the outcome −30 arrives with probability 1/2. At t = 2, 60 arrives
with probability 1/6. The time-separation method would underweight the negative outcome
−30 and overweight the positive outcome 60, and therefore overestimate the lottery. This is
different for the present-value method. The lottery contains three positive outcome streams:
(60,−30, 60), (60, 0, 30), (30, 60, 0). The present values of these streams should be similar.
The probability that one of these three streams arrives is 2/3. The present-value method
would therefore underweight these positive streams and, thus, underestimate the lottery.

For Lottery 24 at t = 1 and t = 2, 60 arrives with probability 1/2. The time-separation
method would underweight this outcome and therefore underestimate the lottery. For the
present-value method, the outcome stream (60, 60, 60) arrives with probability 1/6. The
present-value method thus overweights this stream and overestimates the lottery.

The test lotteries are set up so that the evaluations under the two methods give (sizably)
different results. To assure a fair comparison we choose test lotteries so that the degree
to which one method over- and the other underestimates the lottery are similar (assuming
typical atemporal calibrations). Table B.1 summarizes these features of the test lotteries.

Table B.1: Overview test lotteries (12 Lotteries)

No weighting Time-separation Present-value
CE CE Rel. deviation CE Rel. deviation
(1) (2) (3) (4) (5)

Lottery 7 10.6 12 0.13 9.2 -0.13
Lottery 8 19.3 17 -0.09 20.8 0.08
Lottery 15 211.2 240.4 0.14 184.3 -0.13
Lottery 16 386.1 340.2 -0.1 416.6 0.08
Lottery 23 -10.6 -12 -0.13 -9.2 0.13
Lottery 24 -19.3 -17 0.09 -20.8 -0.08
Lottery 31 -211.2 -240.4 -0.14 -184.3 0.13
Lottery 32 -386.1 -340.2 0.12 -416.6 -0.08
Lottery 39 11 13.3 0.21 8.6 -0.22
Lottery 40 9.8 7.1 -0.28 12.4 0.27
Lottery 47 220.3 265.4 0.2 171.8 -0.22
Lottery 48 195.9 141.1 -0.28 248.8 0.27

Notes: To calculate the CEs we use specifications suggested by Tversky and Kahneman (1992) i.e, v(x) =

1(x ≥ 0)x0.88
− 1(x < 0)2.25(−x)0.88, and w+(p) = w−(p) = p0.69

(p0.69+(1−p)0.69)1/0.69 (without time discounting).
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C Experimental Instructions and Comprehension Test
Question

In Section C.1, we reproduce the complete experimental instructions that subjects receive
before the experiment. Section C.2 contains the comprehension test questions that partici-
pants have to answer correctly before starting with the decision tasks. Section C.3 contains
the information that participants receive during the experiment before starting each of the
six blocks of decision tasks (that appear in random order). Section C.4 contains the brief
post-experimental questionnaire. All texts are in English translation.

We provide the information for both treatments jointly. If nothing is indicated, texts and
figures are shown in both treatments. Where there is a difference, this is indicated by
highlighted brackets. The first part in the brackets applies to the hypothetical treatment
T1, the latter part to the incentivized treatment T2. For instance, [ example text / different
example text ] signifies that participants in T1 see “example text”, while participants in T2
see “different example text”. [ NO TEXT / example text ] signifies that participants in T1
do not see any text for this part, while participants in T2 see “example text”.

C.1 Experimental Instructions

The aim of this research is to better understand how people make decisions. The research
is carried out by researchers from the University of St. Gallen in Switzerland.

The experiment consists of 6 parts. In each part you will complete eight decision tasks, thus
48 decision tasks in total. Please read the following explanation carefully.

[ The decisions you make in this questionnaire do not affect your payments for this ques-
tionnaire. Please make your decisions as if they involved real monetary gains or losses. / In
addition to the regular payment for completing this questionnaire, there will be an additional
payment depending on your decisions. This will be explained later. Not all decisions will
affect your earnings, but please make all decisions as if they involved real monetary gains or
losses. ]

General Instructions
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Probabilities (expressed in percentages) play an important role in this research. We will use
a wheel of fortune to display probabilities.

The probability that the black indicator (on the top of the wheel) points at a grey part
after spinning the wheel is equal to 10%, because 1/10 (one tenth) of the wheel is grey. The
probability that the black indicator points at a green part after spinning the wheel is thus
equal to 90%, because 9/10 (nine tenths) of the wheel are green.

Time also plays an important role in this research. As displayed by the grey areas in the
table below, payments can be made ”now”, ”in 3 months” or ”in 6 months”.

Each decision task will involve a safe option and a risky option. A risky option yields
monetary payouts with certain probabilities. Each risky option may have payouts now, in 3
months and in 6 months. As will be explained below, the payout in 3 months depends on
the payout now. The payout in 6 months depends on the payout in 3 months.

We explain how the risky option works with the example below. In the chart, you see two
wheels of fortune that show illustrate the probabilities.
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The payout now is either 30 euro or 10 euro. The probability that 30 euro are paid is 10%
and the probability that 10 euro are paid is 90%, as the arrows in the first block (Now) show.

In addition to the payout now, the risky option yields a payout in 3 months and a payout
in 6 months. The additional payout in 3 months depends on the payout now and is 60 euro,
20 euro, or 0 euro.

• If the payout now is 30 euro, then the payout in 3 months is 60 euro with probability
50% and 20 euro with probability 50%, as indicated by the arrows in the second block
(in 3 months).

• If the payout now is 10 euro, then the payout in 3 months is 0 euro, as the arrow
between the 10 euro in the first block (now) and the 0 euro in the second block (in 3
months) shows.

The additional payout in 6 months is either 10 euro or 0 euro depending on the payout in 3
months.

• If the payout in 3 months is 20 euro or 60 euro, then the payout in 6 months is 10 euro
with certainty.

• If the payout in 3 months is 0 euro, then the payout in 6 months is also 0 euro.

Here is another example. Note that there are only negative payouts in this example.

For negative payouts you should imagine that you have to pay money to the researcher, thus
that you lose money. In this example, in the block ?now?, is the probability 50% that the
payout is -10 euro and the probability is 50% that the payout is -40 euro. The additional
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payout in 3 months is either 0 euro or -30 euro and depends on the payout now. If, for
example, the payout now is -10 euro, then the payout in 3 months is 0 euro. The additional
payout in 6 months is then -20 euro, -40 euro, or -60 euro and depends on the payout in the
second block (in 3 months). If the payout there is -30 euro, then the probability is 50% that
the payout in 6 months is -40 euro and 50% that the payout is -60 euro.

The two examples that you saw gave only positive or only negative payouts. In the research,
there is also a third type of risky option, which contains a mix of positive and negative
payouts.

Decisions

In each decision task there is one risky option. You can choose between the risky option and
a safe option. Both options (risky or safe) yield payouts at three different points in time
(now, in 3 months, and in 6 months). In contrast to the payouts of the risky option, the
payouts of the safe option are certain and they are always the same. As displayed in the
figure below, the safe option can, for example, yield a certain payout sequence of 10 euro
now, 10 euro in three months, and 10 euro in six months.

Each decision screen contains three elements. The first element is a chart that displays the
payout structure of the risky option. The second element is a chart that displays the payouts
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of the safe option. The third element is a ”slider” that you can position in order to indicate
for which amounts paid in the safe option you would rather have the risky option than the
safe option. An example of the three elements together is displayed below.

Element 1

Consider the risky option for this decision task.

Element 2

The alternative to the risky option is a safe option that yields three certain and identical
payouts:

Element 3

Below you can see the slider that you can move.
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You can move the slider to the left and to the right to indicate your choice. There are no
right or wrong choices: the position of the slider indicates what you prefer and preferences
may be different for different people.

Example: Assume that you prefer the risky option as long as the certain amount of the safe
option that you would receive three times (once now, once in 3 months, once in 6 months)
is 11 euro or less. However, if the certain amount of the safe option that you would receive
three times is 12 euro or more (thus in total 36 euro or more), you prefer the safe option.
Then you have to position the slider as displayed below.

In this example, the risky option only contains positive payouts. But you will also see risky
options that only contain negative payouts (you do not receive money, but you have to pay)
and risky options that contain a mix of positive and negative payouts

Imagine: You consider a risky option with only negative payouts the lesser evil when the
amount in the safe option that you would lose three times (once now, once in 3 months, once
in 6 months) is 22 euro or more (thus in total 66 euro or more). You, however, perceive the
risky option as the greater evil when the amount that you would lose three times in the safe
option is 21 euro or less (which means that you would lose in total at most 63 euro). Then
you have to position the slider as shown here:

Thus, each decision task thus has two options to choose from:

• a risky option where the payouts at three different points in time (now, in 3 months,
and in 6 months) are uncertain.

• a safe option that yields three payouts (now, in 3 months and in 6 months) that are
the same.
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You are asked to position a slider to indicate for which amounts that you receive three times
in the safe option, you would prefer the risky option over the safe option.

[ NO TEXT / Payments

You receive a compensation for completing this questionnaire. But you can also earn an
extra payment, depending on your choices and on luck. This extra payment is calculated as
follows. The research consists of six parts. In each part, there are eight decision tasks, thus
48 in total. In two of the six parts, there are risky options that only contain positive payouts.
The eight risky options in one of these two parts yield small to medium payouts, whereas the
eight risky options in the other part yield medium to high payouts. One of these 16 decision
tasks will be randomly selected for payment at the end of the questionnaire. There is a 1%
chance that the selected decision task is from the part with medium to large payouts, and
there is a 99% chance that the selected decision task is from the part with small to medium
payouts. The decisions you make in the other four parts cannot be selected for payment.

In the example below, we describe how the payment for the randomly selected decision task
is calculated. Assume that you positioned the slider in the selected decision task as displayed
below:
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The computer then randomly selects an amount between the lower and upper limits of the
slider, in this example thus between 3 euro and 33 euro. All amounts on the slider are equally
likely to be selected. You will then receive the option that you chose for the randomly selected
amount. In this example:

• If the randomly selected amount is 12 euro or more, the slider shows that you prefer
receiving this amount three times (now, in 3 months, in 6 months) over the three
uncertain payouts of the risky option. If, for example, the randomly selected amount
is 13 euro, you receive 13 euro now, 13 euro in 3 months, and 13 euro in 6 months.

• If the randomly selected amount 11 euro less, the slider shows that you prefer the risky
option. Your payment will then be determined through the risky option. The computer
will then randomly determine the outcomes, and you will be told the results at the end
of the questionnaire. Also here, the payouts will take place now, in 3 months, and in
6 months. ]

Before the first part of the research starts, we would like to ask you a few test questions to
make sure that you fully understand the instructions.

Please click ”Next” to proceed to the questions.

C.2 Comprehension Test Questions

Question 1: Consider the risky option above and indicate for each statement whether it is
true or false.
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• The payout now is either 40 euro with probability 50% or -20 euro with probability
50%.

• If the payout now is -20 euro (you lose of 20 euro), then the payout in 3 months is -10
euro (you lose 10 euro) with certainty, and the payout in 6 months is -30 euro (you
lose 30 euro) with certainty.

Question 2: Consider the risky option above and indicate for each statement whether it is
true or false.

• The payout now is 0 euro with probability 10%. If the payout now is 0 euro, then
the payout in 3 months is 10 euro. If the payout is 10 euro in three months, then the
payout in 6 months is 20 euro with probability 50%. The probability that the payouts
are 0 euro now, 10 euro in 3 months, and 20 euro in six months is, thus, 5%, because
50% of 10% is 5%.

• The payout in three months can only be 30 euro if the payout now is 40 euro. The
payout now is 40 euro with probability 90%. After a payout of 40 euro now, the payout
in 3 months is 30 euro with probability 50%. The payout in three months is, thus, 30
euro with probability 45%, because 50% of 90% is 45%.
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[

Question 3: Consider the slider displayed above and indicate whether the following state-
ment is true or false.

• The position of the slider shows that if you are offered certain payouts of three times
20 euro (20 euro now, 20 euro in 3 months and 20 euro in 6 months), then you would
reject these certain payouts and instead prefer the risky option.

/

Part of your payment for the decision tasks depends on luck and your decisions in two of
the six parts of the questionnaire. For this, only one decision task will be randomly selected.
Assume that you positioned the slider in the randomly selected decision task as shown here:

The computer randomly selects an amount between 3 euro and 33 euro. All amounts are
equally likely to be selected. Assume that the randomly selected amount is 20 euro.

Question 3: Please indicate whether the following statement is true or false.
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• The position of the slider shows that if you are offered certain payouts of three times
20 euro (20 euro now, 20 euro in 3 months and 20 euro in 6 months), then you would
reject these certain payouts and instead choose the risky option. The risky option will
then determine the payments. The payouts take place now, in 3 months, and in 6
months. The money will be thus be paid at three different points in time.

]

C.3 Information Before Each Block of Decision Tasks During the
Experiment

Information before starting the decision tasks of block 1:

In the eight decisions tasks of this part you will see risky options that yield small-to-medium
positive payouts (gains).

[ NO TEXT / As explained earlier, only one decision task will be randomly selected
for payment at the end of the questionnaire. There is a 99% chance that one of
the eight decision tasks from this part will be selected for payment. ]

Please click on the “Next” button to proceed to the first decision task of this part.

Information before starting the decision tasks of block 2:

In the eight decisions tasks of this part you will see risky options that yield medium-to-large
positive payouts (gains).

[ NO TEXT / As explained earlier, only one decision task will be randomly selected
for payment at the end of the questionnaire. There is a 1% chance that one of
the eight decision tasks from this part will be selected for payment. ]

Please click on the “Next” button to proceed to the first decision task of this part.

Information before starting the decision tasks of block 3:

In the eight decisions tasks of this part you will see risky options that yield small-to-medium
negative payouts (losses).

Please click on the “Next” button to proceed to the first decision task of this part.
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Information before starting the decision tasks of block 4:

In the eight decisions tasks of this part you will see risky options that yield medium-to-large
negative payouts (losses).

Please click on the “Next” button to proceed to the first decision task of this part.

Information before starting the decision tasks of block 5:

In the eight decisions tasks of this part you will see risky options that yield small-to-medium
positive payouts (gains) but also small-to-medium negative payouts (losses).

Please click on the “Next” button to proceed to the first decision task of this part.

Information before starting the decision tasks of block 6:

In the eight decisions tasks of this part you will see risky options that yield medium-to-large
positive payouts (gains) but also medium-to-large negative payouts (losses).

Please click on the “Next” button to proceed to the first decision task of this part.

C.4 Post-experimental Questionnaire

You have now completed all six parts with decision tasks. There are only a few questions
remaining.

During the decision tasks we asked you to position a slider. Was it clear for you what the
position of the slider meant?

• Very clear
• Rather clear
• Unclear

During the decision tasks we asked you to evaluate risky options with uncertain payouts at
three different points in time. How complicated were these decision tasks?

• Okay
• Complicated
• Too complicated

Please honestly report your attention during the questionnaire.
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• I paid attention in all six parts.
• I paid attention in most of the six parts.
• I only paid attention in a few parts or not at all.

When making your decisions, did you take into consideration that the payouts of the risky
option arrive at three different points in time?

• Always
• Sometimes
• Never

D Additional Data Analysis

D.1 Exclusion Criteria

Table D.1 summarizes subjects’ responses in the post-game survey. The relative share of
subjects that gave a specific answer is added in parentheses. Subjects are excluded if they
answer at least one of these questions with the ‘worst’ answer possibility. Table D.2 sum-
marizes the distribution of ‘worst’ answers. Note that the same subject may give the ‘worst’
answer to several questions.

The second exclusion criteria is the median decision time. Table D.3 provides an overview of
the median decision times among i) the subjects that started the experiment (n = 391), ii)
the subjects that were excluded due to their responses in the post-game survey or because
they did not finish the experiment (n = 205) , iii) the subjects that finished the experiment
and were not excluded due to their responses in the post-game survey (n = 186).
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Table D.1: Summary post-game survey responses

Q1: Was it clear what the position of the slider meant?
Answer Very clear Rather clear Unclear
n 106 (28%) 153 (40%) 119 (31%)
Q2: How complex were the decision tasks?
Answer Okay Complicated Too complicated
n 101 (26%) 159 (42%) 118 (31%)
Q3: In how many parts did you pay attention?
Answer All parts Most parts Few parts
n 103 (27%) 130 (34%) 145 (38%)

Table D.2: Exclusion by post-game survey

Worst response to n

Only Q1 17
Only Q2 17
Only Q3 33
Q1 and Q2 13
Q1 and Q3 24
Q2 and Q3 23
Q1 and Q2 and Q3 65

Table D.3: Overview median decision time

Median time per decision (in seconds) [0-5) [5 - 15) [15 - 30) [30 - 45) > 45
Full sample 133 125 66 33 34
Excluded due to survey 95 77 25 7 1
Not excluded due to survey 38 48 41 26 33
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D.2 Demographic Variables of Participants

Table D.4 presents summary statistics of main demographic variables of our sample and of the
representative subject pool. Column (1) displays the statistics of our main sample (n = 100).
Columns (2) and (3) display summary statistics of the excluded subjects (n = 291) and of the
entire representative subject pool from which the participants of our experiment were drawn
(n = 8976) Comparing these samples we only observe statistically significant differences for
i) the share of participants with academic education and ii) the share of participants with
an income larger than 4500 Euros (which is only marginally significant when comparing our
final sample to the original pool).

Table D.4: Demographic variables of participants

Final Excluded Pool t-tests
(1) (2) (3) (1) vs. (2) (1) vs. (3)

Sex (1 = Female) 0.48 0.50 0.51
Age ≤ 24 0.11 0.08 0.09
Age 25 − 44 0.28 0.26 0.31
Age 45 − 64 0.30 0.37 0.33
Age ≥ 65 0.31 0.30 0.27
Income ≤ 1500 0.28 0.30 0.30
Income 1501 − 3000 0.27 0.30 0.33
Income 3001 − 4500 0.26 0.20 0.19
Income > 4500 0.16 0.11 0.10 ∗

Primary education 0.05 0.09 0.06
Secondary education 0.23 0.30 0.30
Vocational education 0.51 0.51 0.50
Academic education 0.21 0.11 0.14 ∗∗ ∗

Notes: ∗ and ∗∗ indicate significant differences of t-tests at the 10%-level and 5%-level.

D.3 Prediction Error by-Lottery

Table D.5 displays the mean absolute prediction error of the time-separation (TS) and
present-value method (PV). The column names refer to the 12 test lotteries and the row
names refer to the model combinations as in Table 4. The payout ranges of the lotteries
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are displayed in parentheses. Table D.6 shows the weighted mean-squared errors of the
time-separation and present-value methods per lottery.

Table D.5: Mean absolute prediction error (by lottery)

Low-stake lotteries High-stake lotteries
Comb. Meth. L7 L8 L15 L16 L23 L24 L31 L32 L39 L40 L47 L48

(23) (20) (23) (20) (30) (50) (467) (400) (467) (400) (600) (1000)

C1 TS 6.0 8.1 7.3 5.6 7.9 16.7 144.1 148.6 146 124.9 180 319.9
PV 5.2 5.6 6.1 5.6 7.2 14.6 108.5 118 114.4 115 150.7 276.8

C2 TS 6.0 8.1 7.3 5.6 8.2 16.3 144.0 148.1 145.9 125.4 188.1 312.3
PV 5.2 5.6 6.1 5.6 7.0 14.5 108.5 117.7 114.4 114.0 150.6 275.3

C3 TS 6.1 8.1 7.7 5.5 7.5 18.0 149.3 148.6 155.9 123.1 170.4 347.1
PV 5.7 6.5 6.1 5.3 7.5 14.6 104.5 124.3 116.0 110.3 153.9 279.1

C4 TS 6.2 8.1 7.6 5.5 8.0 17.7 150.6 148.6 153.9 125.4 183.8 339.3
PV 5.7 7.1 6.1 5.4 7.1 14.6 104.5 132.2 116.0 113.2 150.6 277.6

C5 TS 6.2 8.0 7.9 5.6 7.6 17.6 152.2 148.1 162.4 117.9 174.0 339.2
PV 5.5 6.2 6.0 5.3 7.4 14.6 104.8 121.2 114.3 109.9 152.1 278.6

C6 TS 6.1 8.1 7.6 5.6 7.6 17.8 149.4 148.6 152.8 123.2 172.6 341.5
PV 5.5 6.3 6.0 5.3 7.5 14.7 104.7 122.4 115.2 110.1 153.1 279.9

C7 TS 5.3 8.1 6.4 5.6 7.1 17.7 122.4 146.6 128.3 125.4 161 340.7
PV 5.6 6.2 6.1 5.3 7.5 15.1 104.6 120.8 114.2 109.9 153.4 288.9

C8 TS 5.3 8.1 6.4 5.6 7.1 17.7 122.4 148.6 128.3 125.4 161.0 340.7
PV 5.6 6.2 6.1 5.3 7.5 15.1 104.6 120.8 114.2 109.9 153.4 288.9

C9 TS 5.3 8.1 6.4 5.6 7.1 17.7 122.4 144.3 128.3 125.4 161.0 340.7
PV 5.6 6.2 6.1 5.3 7.5 15.1 104.6 120.8 114.2 109.9 153.4 288.9

C10 TS 6.4 7.6 7.8 5.5 7.9 16.7 128.6 141.2 131.4 125.4 158.3 362.6
PV 5.3 5.7 6.0 5.3 7.2 14.6 104.5 127.5 116.3 111.3 158.6 290.4

C11 TS 6.4 7.9 7.9 5.6 8.8 16.1 129.5 148.6 134.9 121.4 170.1 348.4
PV 5.3 6.0 6.0 5.3 6.9 14.5 104.5 135.2 115.6 114.0 150.7 286.9

C12 TS 6.6 7.4 8.0 5.4 8.1 16.5 132.7 148.6 136.0 123.4 161.4 355.4
PV 5.2 5.7 6.0 5.3 7.1 14.5 104.5 128.4 115.7 111.6 156.8 288.1

Notes: The mean absolute prediction error of Lottery j is calculated as mean(∣CEi,j − ĉej ∣), with CEi,j

denoting the certainty equivalent subject j reported for Lottery j and ĉej denoting the predicted certainty
equivalent resulting from the parameters estimated on the calibration set. Payout ranges are shown in
parentheses below the lottery number.
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Table D.6: MSE (by lottery)

Low-stake lotteries High-stake lotteries
Comb. Meth. L7 L8 L15 L16 L23 L24 L31 L32 L39 L40 L47 L48

C1 TS 0.10 0.27 0.15 0.18 0.11 0.19 0.13 0.25 0.15 0.21 0.14 0.17
PV 0.08 0.11 0.10 0.10 0.09 0.13 0.08 0.11 0.09 0.11 0.09 0.12

C2 TS 0.10 0.27 0.15 0.18 0.12 0.18 0.13 0.25 0.15 0.21 0.15 0.17
PV 0.08 0.11 0.10 0.10 0.08 0.12 0.08 0.12 0.09 0.11 0.09 0.12

C3 TS 0.10 0.27 0.16 0.18 0.10 0.22 0.14 0.25 0.16 0.20 0.13 0.20
PV 0.09 0.17 0.10 0.12 0.10 0.13 0.08 0.16 0.09 0.13 0.09 0.12

C4 TS 0.10 0.27 0.16 0.18 0.12 0.21 0.14 0.25 0.16 0.21 0.15 0.19
PV 0.09 0.20 0.10 0.15 0.08 0.13 0.08 0.20 0.09 0.16 0.09 0.12

C5 TS 0.11 0.27 0.17 0.18 0.11 0.21 0.15 0.25 0.18 0.18 0.13 0.19
PV 0.09 0.15 0.10 0.11 0.09 0.13 0.08 0.15 0.09 0.12 0.09 0.12

C6 TS 0.10 0.27 0.16 0.18 0.10 0.21 0.14 0.25 0.16 0.20 0.13 0.20
PV 0.09 0.16 0.10 0.12 0.09 0.13 0.08 0.15 0.09 0.13 0.09 0.12

C7 TS 0.08 0.27 0.11 0.18 0.09 0.21 0.10 0.25 0.12 0.21 0.11 0.20
PV 0.09 0.15 0.10 0.12 0.09 0.15 0.08 0.15 0.09 0.12 0.09 0.14

C8 TS 0.08 0.27 0.11 0.18 0.09 0.21 0.10 0.25 0.12 0.21 0.11 0.20
PV 0.09 0.15 0.10 0.12 0.09 0.15 0.08 0.15 0.09 0.12 0.09 0.14

C9 TS 0.11 0.24 0.17 0.17 0.12 0.19 0.11 0.25 0.12 0.21 0.11 0.22
PV 0.08 0.12 0.10 0.10 0.09 0.13 0.08 0.18 0.09 0.14 0.10 0.14

C10 TS 0.11 0.26 0.17 0.18 0.14 0.18 0.11 0.25 0.13 0.21 0.13 0.20
PV 0.08 0.14 0.10 0.11 0.08 0.12 0.08 0.21 0.09 0.16 0.09 0.13

C11 TS 0.12 0.23 0.18 0.16 0.12 0.18 0.11 0.25 0.13 0.21 0.11 0.21
PV 0.08 0.12 0.10 0.10 0.09 0.12 0.08 0.18 0.09 0.15 0.10 0.14

C12 TS 0.12 0.23 0.18 0.16 0.12 0.18 0.11 0.25 0.13 0.21 0.11 0.21
PV 0.08 0.13 0.10 0.10 0.08 0.12 0.08 0.18 0.09 0.15 0.09 0.13

Notes: This table contains the (weighted) MSE for each test lottery and each function combination sepa-
rately.
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D.4 Prediction Error by-Participant

Figure D.1 shows the distribution of the MSE difference (MSET S −MSEP V ) on the partic-
ipant level. The MSE difference is calculated for each participant using the aggregate level
parameter estimates displayed in Table D.7 below (these are the parameter estimates on the
calibration set). The labels C1 to C12 refer to the combinations as in Table 4. For each
of the 12 combinations the MSE difference is (sizable) larger than 0 for a majority of the
participants.
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(a) Combinations C1 and C2 (b) Combinations C3 and C4

(c) Combinations C5 and C6 (d) Combinations C7 and C8

(e) Combinations C9 and C10 (f) Combinations C11 and C12

Figure D.1: Densities of by-participant MSE differences (MSET S −MSEP V )

Notes: This figure shows the empirical density functions of differences in MSE per participant (MSET S −

MSEP V ). Always two function combinations are shown in one panel, only differing by the type of time
discounting (exponential or quasi hyperbolic).
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D.5 Parameter Estimates on the Calibration Set

Table D.7 shows the parameters estimated on the calibration set (with bootstrapped standard
errors in parentheses). These estimates are identical for the time-separation and the present-
value method. The labels C1 to C12 refer to the combinations as in Table 4. The coefficients
for exponential utility (α and β) in C7 to C12 are multiplied by a factor of 1000.

Table D.7: Overview parameter estimates on calibration set (36 lotteries)

Value Weighting Discounting
Combination α β λ γ+ γ− ν+ ν− r k

C1 1.172 1.176 0.530 0.550 0
(0.072) (0.275) (0.041) (0.061) (0)

C2 1.182 1.089 0.536 0.557 0 0.943
(0.081) (0.295) (0.04) (0.061) (0) (0.069)

C3 0.817 1.062 0.471 0.481 0.729 0.701 0.001
(0.126) (0.254) (0.07) (0.092) (0.123) (0.151) (0.012)

C4 0.801 1.072 0.488 0.508 0.681 0.657 0 0.845
(0.123) (0.206) (0.072) (0.094) (0.119) (0.145) (0.003) (0.063)

C5 0.896 1.116 0.432 0.443 1.052 1.115 0
(0.061) (0.244) (0.06) (0.072) (0.112) (0.168) (0.006)

C6 0.891 1.142 0.425 0.437 1.050 1.101 0 0.990
(0.062) (0.243) (0.06) (0.072) (0.108) (0.167) (0.005) (0.037)

C7 -0.016 -0.120 1.137 0.617 0.636 0
(0.150) (0.1) (0.210) (0.033) (0.042) (0)

C8 -0.016 -0.120 1.137 0.617 0.636 0 1
(0.149) (0.096) (0.212) (0.032) (0.042) (0) (0)

C9 0.418 0.402 1.136 0.455 0.476 0.870 0.850 0.002
(0.126) (0.115) (0.219) (0.062) (0.081) (0.047) (0.04) (0.014)

C10 0.406 0.382 1.09 0.474 0.494 0.841 0.812 0 0.843
(0.124) (0.117) (0.184) (0.062) (0.082) (0.052) (0.046) (0.003) (0.060)

C11 0.40 0.390 1.123 0.441 0.456 0.961 1.013 0.004
(0.128) (0.119) (0.217) (0.06) (0.073) (0.070) (0.076) (0.010)

C12 0.392 0.376 1.105 0.443 0.456 0.964 1.016 0 0.979
(0.131) (0.119) (0.226) (0.061) (0.073) (0.074) (0.08) (0.005) (0.037)

Notes: This table shows the parameter estimates on the calibration set, for four selected function combina-
tions. These estimates are identical for time-separation and present-value methods.

A29



D.6 Parameter Estimates on All Lotteries

Table D.8 shows the parameter estimates (with standard errors in parentheses) for the
present-value method, estimated on all lotteries. The labels C1 to C12 refer to the com-
binations as in Table 4. The coefficients for exponential utility (α and β) are multiplied by
a factor of 1000.

Table D.8: Overview parameter estimates on full sample (48 lotteries)

Value Weighting Discounting
Combination α β λ γ+ γ− ν+ ν− r k

C1 1.195 1.069 0.535 0.551 0.117
(0.068) (0.096) (0.045) (0.06) (0.036)

C2 1.172 1.065 0.547 0.565 0.016 0.863
(0.061) (0.121) (0.043) (0.057) (0.025) (0.043)

C3 1.092 1.010 0.406 0.427 0.992 0.988 0.076
(0.04) (0.150) (0.067) (0.082) (0.065) (0.057) (0.032)

C4 1.080 1.104 0.425 0.453 0.976 0.975 0 0.855
(0.032) (0.182) (0.068) (0.08) (0.059) (0.054) (0.003) (0.037)

C5 1.091 1.037 0.426 0.448 0.766 0.786 0.070
(0.035) (0.127) (0.066) (0.073) (0.074) (0.071) (0.028)

C6 1.085 1.101 0.423 0.451 0.786 0.796 0.0012 0.884
(0.03) (0.163) (0.07) (0.073) (0.073) (0.068) (0.016) (0.045)

C7 -0.115 -0.116 0.960 0.622 0.639 0
(0.066) (0.065) (0.095) (0.035) (0.042) (0)

C8 -0.122 -0.112 0.919 0.624 0.638 0 1
(0.065) (0.065) (0.096) (0.036) (0.043) (0) (0)

C9 0.078 0.200 0.925 0.452 0.446 0.897 0.861 0
(0.049) (0.060) (0.113) (0.07) (0.086) (0.05) (0.036) (0.013)

C10 0.07 0.166 1 0.442 0.450 0.879 0.855 0 0.953
(0.05) (0.061) (0.116) (0.069) (0.086) (0.049) (0.036) (0) (0.034)

C11 0.064 0.170 0.943 0.428 0.422 0.913 0.974 0
(0.050) (0.059) (0.106) (0.07) (0.077) (0.064) (0.067) (0.007)

C12 0.066 0.179 0.933 0.428 0.423 0.912 0.975 0 1
(0.048) (0.06) (0.118) (0.07) (0.077) (0.065) (0.067) (0) (0.023)

Notes: This table shows the parameter estimates on the full set of lotteries (calibration plus test set) for the
present-value method.
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D.7 Parameter Estimates for the Time-separation Method (All
Lotteries)

Table D.9 shows the parameter estimates (with standard errors in parentheses) for the time-
separation method. The labels C1 to C12 refer to the combinations as in Table 4. The
coefficients for exponential utility (α and β) are multiplied by a factor of 1000.

Table D.9: Overview parameter estimates time-separation method (48 lotteries)

Value Weighting Discounting
Combination α β λ γ+ γ− ν+ ν− r k

C1 1.037 1.255 0.791 0.76 0
(0.032) (0.134) (0.086) (0.090) (0)

C2 1.032 1.224 0.788 0.764 0 0.96
(0.034) (0.131) (0.085) (0.090) (0) (0)

C3 1.077 1.245 0.73 0.699 1.038 1.025 0
(0.046) (0.189) (0.113) (0.130) (0.046) (0.050) (0)

C4 1.049 1.116 0.751 0.694 1.003 0.978 0 1
(0.045) (0.140) (0.110) (0.130) (0.043) (0.045) (0) (0)

C5 1.047 1.164 0.745 0.686 0.893 0.895 0
(0.031) (0.135) (0.108) (0.128) (0.057) (0.072) (0)

C6 1.033 1.118 0.754 0.687 0.913 0.912 0 1
(0.032) (0.140) (0.108) (0.127) (0.057) (0.071) (0) (0)

C7 -0.012 -0.034 1.1468 0.828 0.806 0
(0.043) (0.056) (0.096) (0.065) (0.071) (0)

C8 -0.014 -0.034 1.155 0.829 0.808 0 1
(0.042) (0.057) (0.097) (0.064) (0.071) (0) (0)

C9 0.1 0.15 1.109 0.807 0.758 0.921 0.897 0
(0.08) (0.053) (0.093) (0.087) (0.120) (0.049) (0.033) (0)

C10 0.0916 0.1508 1.104 0.802 0.755 0.922 0.897 0 1
(0.079) (0.054) (0.105) (0.086) (0.120) (0.050) (0.033) (0) (0)

C11 0.09 0.148 1.138 0.78 0.7305 1.025 1.0417 0
(0.074) (0.054) (0.106) (0.099) (0.125) (0.044) (0) (0)

C12 0.0986 0.1486 1.098 0.7736 0.7128 1.021 1.041 0 1
(0.074) (0.053) (0.091) (0.098) (0.124) (0.045) (0) (0) (0)

Notes: This table shows the parameter estimates on the full set of lotteries (calibration plus test set) for the
time-separation method.
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D.8 Parameter Estimates for the Monetary Present-value Method
(All Lotteries)

Table D.10 shows the parameter estimates (with standard errors in parentheses) for the
monetary-present value method. The labels C1 to C12 refer to the combinations as in
Table 4. The coefficients for exponential utility (α and β) are multiplied by a factor of 1000.

Table D.10: Calibration monetary present-value method (all combinations)

Value Weighting Discounting
Combination α β λ γ+ γ− ν+ ν− r k

C1 1.179 1.133 0.579 0.592 0
(0.075) (0.227) (0.040) (0.058) (0)

C2 1.182 1.141 0.576 0.576 0 1
(0.072) (0.224) (0.041) (0.058) (0) (0.001)

C3 0.886 1.05 0.415 0.432 0.78 0.774 0.073
(0.065) (0.206) (0.070) (0.082) (0.071) (0.097) (0.039)

C4 0.889 1.075 0.427 0.449 0.782 0.789 0 0.885
(0.047) (0.192) (0.068) (0.082) (0.058) (0.063) (0.002) (0.036)

C5 0.915 1.033 0.403 0.406 1.036 1.05 0.041
(0.049) (0.223) (0.068) (0.075) (0.097) (0.112) (0.023)

C6 0.915 1.087 0.406 0.421 1.03 1.05 0.001 0.938
(0.049) (0.200) (0.069) (0.074) (0.096) (0.118) (0.009) (0.032)

C7 -0.092 -0.096 1.115 0.634 0.646 0
(0.075) (0.066) (0.224) (0.034) (0.043) (0)

C8 -0.074 -0.0852 1.11 0.628 0.639 0 1
(0.079) (0.062) (0.232) (0.033) (0.048) (0) (0)

C9 0.174 0.208 1.147 0.427 0.452 0.834 0.841 0.038
(0.048) (0.054) (0.2) (0.068) (0.083) (0.046) (0.035) (0.021)

C10 0.174 0.222 1.138 0.428 0.456 0.829 0.836 0 0.918
(0.049) (0.053) (0.175) (0.068) (0.082) (0.046) (0.036) (0.001) (0.029)

C11 0.196 0.226 1.151 0.429 0.441 0.996 1.023 0.018
(0.054) (0.050) (0.186) (0.070) (0.074) (0.061) (0.071) (0.019)

C12 0.198 0.218 1.12 0.41 0.429 0.993 1.0246 0 0.95
(0.054) (0.051) (0.187) (0.067) (0.074) (0.063) (0.071) (0.005) (0.029)

Notes: This table shows the parameter estimates on the full set of lotteries (calibration plus test set) for the
monetary present-value method.

A32



D.9 Components of PT (Time-separation Method)

Figure D.2 displays the prediction performance of different Time-Separation models that
either i) include all PT components, ii) force linear probability weighting, iii) force no loss
aversion, or iv) force a linear utility. The prediction performances of models with a linear
utility or no loss aversion are almost identical to the performance of full PT models. Also
models that force linear-probability weighting predict decisions only a bit worse than full
PT models.

Figure D.2: MSE time-separation method, PT components (all function combinations)

Notes: This figure compares the prediction performance of the time-separation method to versions of it with
some components absent and to expected utility theory (parameters are estimated anew for each method).
The versions are (from left to right for each of the 12 function combinations) the monetary present-value
method with all components (‘PT: All Components’), with linear utility for gains and losses still including a
loss-aversion parameter (‘PT: Linear Utility’), with a loss-aversion parameter of 1 (‘PT: No Loss Aversion’),
with linear-probability weighting (‘PT: Linear Probability Weighting’), with linear utility for gains and
losses and a loss-aversion parameter of 1 (‘PT: Linear Utility and No Loss Aversion’); on the right expected
discounted utility is shown (‘EDU’).
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D.10 Components of PT (Monetary Present Value Method)

Figure D.3 displays the prediction performance of different Monetary-Present-value Models
that either i) include all PT components, ii) force linear probability weighting, iii) force no
loss aversion, or iv) force a linear utility. The prediction performances of models with a linear
utility or no loss aversion are almost identical to the performance of full PT models. However,
for models that force linear-probability weighting the prediction performance becomes a lot
worse.

Figure D.3: MSE monetary present-value method, PT components (all function
combinations)

Notes: This figure compares the prediction performance of the monetary present-value method to versions
of it with some components absent and to expected utility theory (parameters are estimated anew for each
method). The versions are (from left to right for each of the 12 function combinations) the monetary
present-value method with all components (‘PT: All Components’), with linear utility for gains and losses
still including a loss-aversion parameter (‘PT: Linear Utility’), with a loss-aversion parameter of 1 (‘PT: No
Loss Aversion’), with linear-probability weighting (‘PT: Linear Probability Weighting’), with linear utility
for gains and losses and a loss-aversion parameter of 1 (‘PT: Linear Utility and No Loss Aversion’); on the
right expected discounted utility is shown (‘EDU’).
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D.11 Allowing for Non-zero Reference Points

Table D.11 shows the parameter estimates (with standard errors in parentheses) for the
present-value method, with estimated reference points r0 (now), r1 (in three months), and r2

(in six months). Table D.12 shows the same estimates for the time-separation method. The
labels C1 to C12 refer to the combinations as in Table 4. The coefficients for exponential
utility (α and β) are multiplied by a factor of 1000.

Table D.11: Parameter estimates PV method (48 lotteries), estimated reference points

Value Weighting Discounting
Combination r0 r1 r2 α β λ γ+ γ− ν+ ν− r k

C1 -1.006 -1.285 -1.333 1.204 1.085 0.518 0.551 0.121
(1.4) (1.249) (1.321) (0.069) (0.113) (0.073) (0.056) (0.038)

C2 -1.019 -1.394 -1.228 1.17 1.109 0.532 0.567 0.004 0.841
(1.338) (1.222) (1.299) (0.076) (0.13) (0.07) (0.058) (0.039) (0.056)

C3 -0.239 0.194 0.207 1.111 1.131 0.406 0.428 0.978 1.02 0.103
(1.126) (1.835) (1.003) (0.048) (0.139) (0.065) (0.079) (0.095) (0.056) (0.036)

C4 -0.323 -0.215 -0.23 1.064 1.189 0.422 0.459 0.935 0.96 0 0.855
(1.139) (1.829) (1.693) (0.037) (0.136) (0.066) (0.078) (0.088) (0.049) (0.015) (0.038)

C5 -0.499 -0.737 -0.795 1.07 1.055 0.418 0.435 0.805 0.814 0.054
(1.15) (1.82) (1.367) (0.047) (0.133) (0.065) (0.073) (0.111) (0.07) (0.033)

C6 -0.382 -0.351 -0.374 1.07 1.156 0.419 0.442 0.827 0.799 0.019 0.926
(1.162) (1.84) (1.487) (0.04) (0.153) (0.068) (0.072) (0.104) (0.073) (0.025) (0.045)

C7 0.125 -0.236 -0.221 -0.13 -0.102 0.934 0.617 0.644 0
(0.306) (0.245) (0.228) (0.071) (0.067) (0.084) (0.039) (0.041) (0)

C8 0.125 -0.236 -0.221 -0.13 -0.102 0.934 0.617 0.644 0 1
(0.307) (0.262) (0.243) (0.071) (0.067) (0.075) (0.04) (0.042) (0) (0)

C9 0.084 -0.136 -0.122 0.068 0.216 0.933 0.441 0.448 0.901 0.846 0
(0.41) (0.536) (0.502) (0.08) (0.094) (0.096) (0.066) (0.083) (0.086) (0.065) (0.012)

C10 0.186 -0.235 -0.218 0.047 0.205 0.935 0.435 0.448 0.905 0.832 0 0.958
(0.375) (0.505) (0.472) (0.076) (0.089) (0.107) (0.067) (0.083) (0.081) (0.058) (0) (0.034)

C11 0.034 -0.09 -0.078 0.089 0.17 1 0.425 0.422 0.928 0.967 0
(0.33) (0.478) (0.445) (0.071) (0.082) (0.094) (0.07) (0.072) (0.1) (0.11) (0.006)

C12 0.034 -0.09 -0.078 0.089 0.17 1 0.425 0.422 0.928 0.967 0 1
(0.319) (0.475) (0.442) (0.071) (0.083) (0.1) (0.07) (0.072) (0.098) (0.108) (0) (0.02)

Notes: This table shows the parameter estimates on the full set of lotteries (calibration plus test set) for the
present-value method, including estimates of the reference points.

Figure D.4 illustrates the difference in MSE between the time-separation and the present-
value methods, when reference points are estimated. The confidence intervals show that all
differences are strongly significant.
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Table D.12: Parameter estimates TS method (48 lotteries), estimated reference points
Value Weighting Discounting

Combination r0 r1 r2 α β λ γ+ γ− ν+ ν− r k

C1 -0.523 -0.34 -0.375 1.031 1.142 0.802 0.773 0
(1.813) (1.613) (1.253) (0.033) (0.135) (0.105) (0.103) (0)

C2 -0.523 -0.34 -0.375 1.031 1.142 0.802 0.773 0 1
(1.845) (2.137) (2.279) (0.033) (0.134) (0.104) (0.104) (0) (0)

C3 -0.223 0.658 0.673 1.102 1.203 0.724 0.661 1.047 1.07 0
(1.898) (2.558) (2.716) (0.096) (0.196) (0.144) (0.15) (0.103) (0.101) (0)

C4 -0.223 0.658 0.673 1.102 1.203 0.724 0.661 1.047 1.07 0 1
(1.932) (2.608) (2.765) (0.1) (0.213) (0.145) (0.149) (0.107) (0.107) (0) (0)

C5 -0.316 0.541 0.543 1.035 1.172 0.76 0.674 0.947 0.872 0
(1.216) (1.914) (1.072) (0.086) (0.221) (0.135) (0.141) (0.153) (0.147) (0.001)

C5 -0.316 0.541 0.543 1.035 1.172 0.76 0.674 0.947 0.872 0 1
(1.255) (1.902) (1.058) (0.09) (0.229) (0.134) (0.14) (0.157) (0.153) (0) (0)

C7 -0.279 0.134 0.132 -0.003 -0.033 1.077 0.847 0.803 0
(0.324) (0.288) (0.28) (0.041) (0.063) (0.084) (0.079) (0.089) (0)

C8 -0.279 0.134 0.132 -0.003 -0.033 1.077 0.847 0.803 0 1
(0.325) (0.287) (0.279) (0.041) (0.062) (0.08) (0.079) (0.089) (0) (0)

C9 -0.105 0.003 0.002 0.105 0.116 1.057 0.804 0.743 0.922 0.902 0
(0.611) (0.682) (0.668) (0.096) (0.152) (0.082) (0.105) (0.115) (0.051) (0.076) (0)

C10 -0.077 -0.026 -0.028 0.102 0.12 1.035 0.804 0.745 0.929 0.899 0 0.99
(0.625) (0.675) (0.661) (0.099) (0.153) (0.078) (0.105) (0.115) (0.052) (0.076) (0) (0)

C11 0.514 -0.651 -0.641 0.011 0.282 1.045 0.77 0.711 0.944 1.148 0
(0.517) (0.577) (0.561) (0.089) (0.125) (0.133) (0.103) (0.121) (0.066) (0.093) (0)

C12 0.571 -0.709 -0.698 0.006 0.288 1.05 0.767 0.714 0.938 1.153 0 0.99
(0.502) (0.58) (0.564) (0.088) (0.125) (0.125) (0.102) (0.12) (0.065) (0.092) (0) (0)

Notes: This table shows the parameter estimates on the full set of lotteries (calibration plus test set) for the
time-separation method, including estimates of the reference points.

Figure D.4: Difference in MSE between the application methods (all function
combinations), estimated reference points

Notes: This figure shows the average differences in mean squared errors (MSE of time-separation method
minus MSE of present-value method) with bootstrapped 95% confidence intervals.
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D.12 Treatment Comparison

Table D.13 summarizes mean evaluations for lotteries of Set 1 and Set 4 (the two sets of gain
lotteries) of participants in the incentivized and hypothetical treatment. Different statistical
test (exact Schlag tests, as pre-registered, as well as t-tests and Wilcoxon-Mann-Whitney
tests) do not show any significant differences in evaluations.

Table D.13: Evaluation of gain lotteries in T1 and T2

Lottery Mean evaluation Schlag-tests t-tests WMW-Tests
T1 (Hyp.) T2 (Inc.) p Adj. p p Adj. p p Adj. p

L1 10.18 10.26 1 1 0.97 0.97 0.79 1
L2 13.07 10.37 0.71 1 0.12 1 0.09 1
L3 17.07 18.78 1 1 0.33 1 0.21 1
L4 16.12 15.04 1 1 0.48 1 0.39 1
L5 14.55 12 0.78 1 0.14 1 0.06 0.9
L6 15.47 15.89 1 1 0.79 1 0.87 0.87
L7 13.48 12.04 1 1 0.34 1 0.24 1
L8 27.75 28.93 1 1 0.45 1 0.5 1
L33 188.32 175.41 1 1 0.73 1 0.75 1
L34 239.64 206.78 1 1 0.31 1 0.52 1
L35 349.58 390.44 0.94 1 0.2 1 0.23 1
L36 293.27 299.52 1 1 0.83 1 0.86 1
L37 262.08 249.22 1 1 0.72 1 0.47 1
L38 279.15 274.56 1 1 0.88 1 0.57 1
L39 208.48 233.63 1 1 0.4 1 0.41 1
L40 540.44 570.7 0.99 1 0.34 1 0.26 1

Notes: This table shows mean evaluations for lotteries of Set 1 and Set 4 (the two sets of gain lotteries) of
participants in the incentivized and hypothetical treatments. Simple p-values are denoted by p, Bonferroni-
Holm-adjusted p-values are denoted by Adj. p.
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